Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)
bn tìm đề thi hsg tỉnh thanh hóa lớp 9 năm nào đó là thấy
bài này dài,ngại làm
đặt là được
Câu hỏi của Hoàng Gia Anh Vũ - Toán lớp 9 - Học toán với OnlineMath
Ta có:\(F=\frac{x^2}{\sqrt{y}}+\frac{y^2}{\sqrt{x}}\)
\(F=\frac{x^2}{\sqrt{y}}+x^2\sqrt{y}+\frac{y^2}{\sqrt{x}}+y^2\sqrt{x}-x^2\sqrt{y}-y^2\sqrt{x}\)
\(F\ge2x^2+2y^2-x^2\sqrt{y}-y^2\sqrt{x}=4-x^2\sqrt{y}-y^2\sqrt{x}\)
Đặt \(A=x^2\sqrt{y}+y^2\sqrt{x}\)
\(A\le\frac{x^2\left(y+1\right)+y^2\left(x+1\right)}{2}=\frac{x^2y+y^2x+2}{2}\)
Ta có:\(x^2y+y^2x=xy\left(x+y\right)\le\frac{x^2+y^2}{2}.\sqrt{2\left(x^2+y^2\right)}=1.2=2\)
\(\Rightarrow A\le\frac{2+2}{2}=2\)
\(\Rightarrow F\ge4-2=2\)
"="<=>x=y=1