Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cô-si cho 2 số dương \(\frac{x}{2};\frac{8}{y}\) ta có:
\(\frac{x}{2}+\frac{8}{y}\ge2\sqrt{\frac{x}{2}\frac{8}{y}}=4\sqrt{\frac{x}{y}}\)
\(\Leftrightarrow2\ge4\sqrt{\frac{x}{y}}\Leftrightarrow0< \sqrt{\frac{x}{y}}\le\frac{1}{2}\Leftrightarrow0< \frac{x}{y}\le\frac{1}{4}\)
Đặt \(\frac{x}{y}=t\left(0< t\le\frac{1}{4}\right)\Rightarrow-t\ge\frac{-1}{4}\)
Ta có: \(K=t+\frac{2}{t}=32t+\frac{2}{t}-31t\ge2\sqrt{32t.\frac{2}{t}}-31t\ge16-\frac{31}{4}=\frac{33}{4}\)
Dấu '=' xảy ra <=> \(t=\frac{1}{4}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}\)
Vậy GTNN của K là \(\frac{33}{4}\) tại x=2;y=8
\(2\ge\frac{x}{2}+\frac{8}{y}\ge2\sqrt{\frac{x}{2}.\frac{8}{y}}=4\sqrt{\frac{x}{y}}\Leftrightarrow\sqrt{\frac{x}{y}}\le\frac{1}{2}\Leftrightarrow\frac{y}{x}\ge4\)
\(K=\frac{x}{y}+\frac{2y}{x}=\frac{x}{y}+\frac{y}{16x}+\frac{31y}{16x}\ge2\sqrt{\frac{x}{y}.\frac{y}{16x}}+\frac{31}{16}.4=\frac{33}{4}\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{8}\\\frac{x}{2}+\frac{y}{8}=2\\\frac{x}{y}=\frac{y}{16x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}\).
Biến đổi từ giả thiết
\(x^3+y^3+6xy\le8\)
\(\Leftrightarrow...\Leftrightarrow\left(x+y-2\right)\left(x^2-xy+y^2+2x+2y+4\right)\le0\)
\(\Leftrightarrow x+y-2\le0\)
(Do \(x^2-xy+y^2+2x+2y+4=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}+2x+2y+4>0\forall x;y>0\))
\(\Leftrightarrow x+y\le2\)
Và áp dụng các bđt \(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(a;b>0\right)\)
Khi đó \(P=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{1}{ab}+ab\right)+\frac{3}{2ab}\)
\(\ge\frac{4}{a^2+b^2+2ab}+2+\frac{6}{\left(a+b\right)^2}\)
\(=\frac{4}{\left(a+b\right)^2}+2+\frac{6}{\left(a+b\right)^2}\ge\frac{9}{2}\)
Dấu "=" <=> a= b = 1
Ta có:
\(\sqrt{xy}\left(x-y\right)=x+y\Rightarrow\left(x+y\right)^2=xy\left(x-y\right)^2\)
đặt x+y=a và xy=b
\(\Rightarrow a^2=b\left(a^2-4b\right)\Rightarrow a^2=a^2b-4b^2\Rightarrow4b^2=a^2\left(b-1\right)\Rightarrow\frac{4b^2}{b-1}=a^2\)
Lại có:
\(\frac{b^2}{b-1}=\frac{b^2-1+1}{b-1}=b+1+\frac{1}{b-1}=b-1+\frac{1}{b-1}+2\ge2+2=4\)
\(\Rightarrow\frac{4b^2}{b-1}\ge16\Rightarrow a^2\ge16\Rightarrow a\ge4\Rightarrow x+y\ge4\)
Dấu bằng xảy ra khi \(x=2+\sqrt{2},y=2-\sqrt{2}\)