\(\sqrt[3]{x}\)+\(\sqrt[3]{y}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

Lời giải:
Đặt \(\sqrt[3]{x}=a; \sqrt[3]{y}=b\). Bài toán trở thành:

Cho số thực dương $a,b$ thỏa mãn $a+b=2018; a^2+b^2=2019$. Tính giá trị biểu thức $A=a^3+b^3$

-------------------------------

\(\left\{\begin{matrix} a+b=2018\\ a^2+b^2=2019\end{matrix}\right.\Rightarrow ab=\frac{(a+b)^2-(a^2+b^2)}{2}=\frac{2018^2-2019}{2}\)

Áp dụng HĐT đáng nhớ:

\(A=a^3+b^3=(a+b)^3-3ab(a+b)=2018^3-3.\frac{2018^2-2019}{2}.2018\)

\(=2018^3-3(2018^2-2019).1009<0\) (vô lý vì $a,b$ dương.

Vậy không tồn tại x,y thỏa mãn ĐKĐB-> không tồn tại biểu thức A

13 tháng 6 2021

Mình cũng học lớp 9 nhưng mk ko biết làm bài này.

13 tháng 6 2021

Đk: \(-1\le x,y,z\le1\)

Ta có: \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}=\frac{x^2-y^2}{2}+\frac{1}{2}\) (bđt cosi)

CMTT: \(y\sqrt{1-z^2}\le\frac{y^2-z^2}{2}+\frac{1}{2}\)

\(z\sqrt{1-x^2}\le\frac{z^2-x^2}{2}+\frac{1}{2}\)

=> VT = \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\frac{x^2-y^2}{2}+\frac{y^2-z^2}{2}+\frac{z^2-x^2}{2}+\frac{3}{2}=\frac{3}{2}\)

VP = 3/2

=> VT = VP <=> \(\hept{\begin{cases}x^2=1-y^2\\y^2=1-z^2\\z^2=1-x^2\end{cases}}\) <=> \(x^2+y^2+z^2=1-y^2+1-z^2+1-x ^2\)

<=> \(2x^2+2y^2+2z^2=3\) <=> \(x^2+y^2+z^2=\frac{3}{2}\)

30 tháng 8 2019

E hổng biết cách này có đúng ko nữa:((

5

Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)

\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )

Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)

22 tháng 7 2016

1) \(x^2+y=y^2+x\Leftrightarrow x^2-y^2-\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=x\\y=1-x\end{cases}}\). Vì x,y là hai số khác nhau nên ta loại trường hợp x = y. Vậy ta có y = x-1.

\(P=\frac{x^2+\left(1-x\right)^2+x\left(1-x\right)}{x\left(1-x\right)-1}=\frac{x^2+x^2-2x+1-x^2+x}{-x^2+x-1}\)

\(=\frac{x^2-x+1}{-\left(x^2-x+1\right)}=-1\)

16 tháng 10 2017

trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)