Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

dạng này thì chỉ có quy đồng thôi nhé mặc dù quy đồng chưa ra

Ta có
\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
Tương tự, ta có
\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)
\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)
Cộng vế theo vế của 3 bđt ta được đpcm

Đặt đẳng thức là A. Áp dụng bất đẳng thức AM-GM ta có:
\(\sqrt{2b\left(a-b\right)}\le\frac{2b+\left(a+b\right)}{2}=\frac{a+3b}{2}\)
Từ đó: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\)
Ta sẽ chứng minh: \(M=\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
Thật vậy, ta có: \(M=\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ca}\)
Theo BĐT AM-GM ta có:
\(ab+bc+ca\le a^2+b^2+c^2\)
Áp dụng BĐT cauchy ta được:
\(M\ge\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a^2+b^2+c^2\right)+\frac{8}{3}\left(ab+bc+ca\right)}\)\(=\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a+b+c\right)^2}=\frac{3}{4}\)
Vì vậy: \(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
Từ đó ta có: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\ge2\sqrt{2}.\frac{3}{4}=\frac{3\sqrt{2}}{2}\)
Vậy đẳng thức xảy xa khi và chỉ khi a=b=c

Đặt \(\frac{ab}{c}=x;\frac{bc}{a}=y;\frac{ca}{b}=z\Rightarrow xy=b^2;yz=c^2;xz=a^2\)
Ta có : \(\hept{\begin{cases}\left(x-y\right)^2\ge o\\\left(y-z\right)^2\ge0\\\left(x-z\right)^2\ge0\end{cases}}\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\ge0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge3\left(xy+yz+xz\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
\(\Leftrightarrow\sqrt{\left(x+y+z\right)^2}\ge\sqrt{3\left(xy+yz+xz\right)}\)
\(\Leftrightarrow\sqrt{\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)^2}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)( a,b,c là số thực dương ) ( ĐPCM )

BĐT <=> \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)
\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)
\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)
Theo BĐT Svacxo:
\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{a^2+b^2+c^2+6}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+6}=1\)
Vậy ta có đpcm.
P/s: Đúng ko ta?

\(\frac{ab}{a^2+b^2}\le\frac{ab}{2ab}=\frac{1}{2}\)
tương tự \(\frac{\Rightarrow ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ac}{a^2+c^2}\le\frac{3}{2}\)
=>Thắng Nguyễn :cm theo cách đó sai

Cosi + Svac-xơ
Có : \(3=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(a+b+c\le3\)
\(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le\frac{1}{4-\frac{a+b}{2}}+\frac{1}{4-\frac{b+c}{2}}+\frac{1}{4-\frac{c+a}{2}}\)
\(=-\left(\frac{1}{\frac{a+b}{2}-4}+\frac{1}{\frac{b+c}{2}-4}+\frac{1}{\frac{c+a}{2}-4}\right)\le\frac{-\left(1+1+1\right)^2}{a+b+c-12}=\frac{-9}{3-12}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
Đặt A = \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\)
A^2 = \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\cdot\frac{ab}{c}\cdot\frac{bc}{a}+2\cdot\frac{bc}{a}\cdot\frac{ac}{b}+2\cdot\frac{ab}{c}\cdot\frac{ac}{b}\)
\(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+2\left(a^2+b^2+c^2\right)\)
\(=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+6\)
\(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2b^2\)
\(\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}\ge2c^2\).
\(\frac{a^2b^2}{c^2}+\frac{c^2a^2}{b^2}\ge2a^2\)
=> A^2 >= \(\left(a^2+b^2+c^2\right)+6=9\)
=> A >=3
dấu = xảy ra khi a = b= c = 1