\(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}=\dfrac{3}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

Áp dụng BĐT Côsi cho 2 số dương x và \(\sqrt{1-y^2}\) có:

x\(\sqrt{1-y^2}\) ≤ \(\dfrac{x^2+1-y^2}{2}\)

Tương tự: \(y\sqrt{1-z^2}\le\dfrac{y^2+1-z^2}{2}\)\(z\sqrt{1-x^2}\le\dfrac{z^2+1-x^2}{2}\)

=> \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\dfrac{x^2+1-y^2+y^2+1-z^2+z^2+1-x^2}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra ⇔ x = y = z = \(\dfrac{\sqrt{2}}{2}\) => x2 = y2 = z2 = \(\dfrac{1}{2}\)

=> x2 + y2 + z2 = 3x2 = 3.\(\dfrac{1}{2}\) = \(\dfrac{3}{2}\)

27 tháng 1 2018

bài 3:

a, đặt x12=y9=z5=kx12=y9=z5=k

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29

A/D tính chất dãy tỉ số bằng nhau ta có:

x5=y7=z3=x225=y249=z29=x2+y2z225+499=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27

2 tháng 6 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{1}{\sqrt{x}+2\sqrt{y}}\le\dfrac{1}{9}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{y}}\right)\)

Tương tự cho 2 BĐT trên ta có:

\(\dfrac{1}{3}VP\le\dfrac{1}{9}\cdot3\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)=\dfrac{1}{3}VT\)

Xảy ra khi \(x=y=z\)

13 tháng 8 2016

Ta có x√(1-y2)<= (x+ 1 - y2)/2

y√(1-z2)<=  (y+1 - z2)/2

z√(1- x2)<= (z+ 1 - x2)/2

=>x√(1-y2) +y√(1-z2)z+√(1- x2)<=3/2

Đấu đẳng thức xảy ra khi: x2 = 1 - y2

y= 1-z2

z = 1- x2

Cộng vế theo vế ta được điều phải chứng minh

13 tháng 8 2016

Thanks nhiều

29 tháng 8 2021

Giá trị nhỏ nhất là 3 căn 7 trên 2

29 tháng 8 2021

\(\dfrac{3\sqrt{17}}{2}\)

4 tháng 8 2018

Áp dụng BĐT Cauchy , ta có :

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)

\(\dfrac{y^2}{\sqrt{1-y^2}}=\dfrac{y^3}{y\sqrt{1-y^2}}\ge\dfrac{y^3}{\dfrac{y^2+1-y^2}{2}}=2y^3\)

\(\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{z^3}{z\sqrt{1-z^2}}\ge\dfrac{z^3}{\dfrac{z^2+1-z^2}{2}}=2z^3\)

\(\Rightarrow\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\)


2 tháng 1 2017

Áp dụng bất đẳng thức Cosi với 2 số thực không âm ta có: 

 \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}\)

 \(y\sqrt{1-z^2}\le\frac{y^2+1-z^2}{2}\)

 \(z\sqrt{1-x^2}\le\frac{z^2+1-x^2}{2}\)

=>\(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\frac{x^2+1-y^2}{2}+\frac{y^2+1-z^2}{2}+\frac{z^2+1-x^2}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x^2=1-y^2;y^2=1-z^2;z^2=1-x^2\)

Cộng vế với vế của các đẳng thức với nhau ta được: \(x^2+y^2+z^2=1-y^2+1-z^2+1-x^2=3-\left(x^2+y^2+z^2\right)\)

<=>\(2\left(x^2+y^2+z^2\right)=3\Leftrightarrow x^2+y^2+z^2=\frac{3}{2}\)(đpcm)

18 tháng 5 2018

Áp dụng liên tiếp bất đẳng thức Mincopxki và bất đẳng thức Cauchy-Schwarz:

\(A=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)

\(A\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(A\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{\left(1+1+1\right)^2}{x+y+z}\right)^2}\)

\(A\ge\sqrt{4+\dfrac{81}{4}}=\sqrt{\dfrac{97}{4}}\)

Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)

18 tháng 5 2018

\(B=\sqrt{x^2+\dfrac{1}{y^2}+\dfrac{1}{z^2}}+\sqrt{y^2+\dfrac{1}{z^2}+\dfrac{1}{x^2}}+\sqrt{z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}}\)

\(B\ge\sqrt{\left(x+y+z\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(B=\sqrt{\left(x+y+z\right)^2+2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}\)

\(B\ge\sqrt{\left(x+y+z\right)^2+2\left(\dfrac{\left(1+1+1\right)^2}{x+y+z}\right)^2}\)

\(B\ge\sqrt{\left(x+y+z\right)^2+\dfrac{162}{\left(x+y+z\right)^2}}\)

\(B\ge\sqrt{4+\dfrac{162}{4}}=\sqrt{\dfrac{89}{2}}\)

Dấu "=" xảy ra khi: \(x=y=z=\dfrac{2}{3}\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

Lời giải:

Đặt \(A=x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\)

Áp dụng BĐT Bunhiacopxky và AM-GM:

\(A^2\leq (x^2+y^2+z^2)(1-y^2+1-z^2+1-x^2)\)

\(\leq \left(\frac{x^2+y^2+z^2+1-y^2+1-z^2+1-x^2}{2}\right)^2=(\frac{3}{2})^2\)

\(\Rightarrow A\leq \frac{3}{2}\)

Dấu "=" xảy ra khi \(x^2+y^2+z^2=1-y^2+1-z^2+1-x^2\Leftrightarrow x^2+y^2+z^2=\frac{3}{2}\)

Ta có đpcm.

27 tháng 10 2018

em cảm ơn cô ạ