\(\sqrt{abc}\)=4. Tính giá trị biểu thức A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

ta có \(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4a+4\sqrt{abc}\)

=> \(4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)

=> \(\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)

=> \(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)

tương tự như thế thay vào , thì A=8

16 tháng 9 2018

Ta có:

\(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4c+4\sqrt{abc}\)

\(\Rightarrow4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)

\(\Rightarrow\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)

\(\Rightarrow\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)

Tương tự như thế thay vào, thì A = 8

1 tháng 1 2017

Ta có:

\(a+b+c+\sqrt{abc}=4\)

\(\Leftrightarrow4a+4b+4c+4\sqrt{abc}=16\)

Ta lại có:

a(4 - b)(4 - c) =  a(16 - 4b - 4c + bc) = a(4a + bc + \(4\sqrt{abc}\))

= (4a2 + \(4a\sqrt{abc}\)+ abc)

= (\(2a+\sqrt{abc}\))2

Tương tự ta có

b(4 - c)(4 - a) = (\(2b+\sqrt{abc}\))2

c(4 - a)(4 - b) = (\(2c+\sqrt{abc}\))2

Từ đây ta có

\(A= 2a+2b+2c+3\sqrt{abc}-\sqrt{abc}\)

\(=8\)     

1 tháng 1 2017

Nhầm 

\(a+b+c-\sqrt{abc}=4\)

Thành

\(a+b+c+\sqrt{abc}=4\)

Mà thôi cũng làm tương tự thôi nên bạn tự làm lại nhé

11 tháng 7 2017

yêu cầu tính hả bạn

25 tháng 10 2017

cái này bạn nhân giả thiết với 4 rồi chuyển làm sao để pt thành nhân tử có chứa như cái trong căn ấy

1 tháng 12 2016
  • \(A=\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}-1\right)^2}=\sqrt{10}-1\)
  • \(B=\left(\sqrt{28}-2\sqrt{4}+\sqrt{7}\right).\sqrt{7}+7\sqrt{7}=\left(2\sqrt{7}-2\sqrt{4}+\sqrt{7}\right).\sqrt{7}+7\sqrt{7}\)

\(=\left(3\sqrt{7}-4\right).\sqrt{7}+7\sqrt{7}=3\sqrt{7}+3\sqrt{7}=6\sqrt{7}\)

  • \(C=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\frac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

  • \(D=0,2.\sqrt{10^2.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=2\sqrt{3}+2\left(\sqrt{3}-\sqrt{5}\right)=4\sqrt{3}-2\sqrt{5}\)
18 tháng 8 2019

\(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4c+4\sqrt{abc}=16\Rightarrow16-4b-4c=4a+4\sqrt{abc}\)

\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16-4b-4c+bc\right)}=\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\)

\(=\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}=2a+\sqrt{abc}\)

Tương tự : \(\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\)\(\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\)

\(\Rightarrow A=2a+2b+2c+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)

22 tháng 9 2018

Ta co:

\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16+bc-4b-4c\right)}\)

\(=\sqrt{a\left(bc+4a+4\sqrt{abc}\right)}=\sqrt{abc+4a^2+4a\sqrt{abc}}\)

\(=\sqrt{\left(2a+\sqrt{abc}\right)^2}=2a+\sqrt{abc}\)

Tương tự ta cũng co:

\(\hept{\begin{cases}\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\\\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\end{cases}}\)

\(\Rightarrow A=2\left(a+b+c\right)+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)

12 tháng 8 2019

Nguyễn Bùi Đại Hiệp phục bạn này lần nào hỏi cũng chép sai đề.

\(a+b+c+\sqrt{abc}=4\)

\(\Leftrightarrow4\left(a+b+c\right)+4\sqrt{abc}=16\)(*)

\(A=\Sigma\left(\sqrt{a\left(4-b\right)\left(4-c\right)}\right)-\sqrt{abc}\)

\(A=\Sigma\left(\sqrt{a\left(16-4b-4c+bc\right)}\right)-\sqrt{abc}\)

Thay (*) vào A ta được :

\(A=\Sigma\left(\sqrt{a\left(4a+4b+4c+4\sqrt{abc}-4b-4c+bc\right)}\right)-\sqrt{abc}\)

\(A=\Sigma\left(\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\right)-\sqrt{abc}\)

\(A=\Sigma\sqrt{a\left(2\sqrt{a}+\sqrt{bc}\right)^2}-\sqrt{abc}\)

\(A=\Sigma\left[\sqrt{a}\cdot\left(2\sqrt{a}+\sqrt{bc}\right)\right]-\sqrt{abc}\)

\(A=\Sigma\left(2a+\sqrt{abc}\right)-\sqrt{abc}\)

\(A=2\left(a+b+c\right)+3\sqrt{abc}-\sqrt{abc}\)

\(A=2\left(a+b+c\right)+2\sqrt{abc}\)

\(A=2\left(a+b+c+\sqrt{abc}\right)\)

\(A=2\cdot4=8\)

Vậy....

12 tháng 8 2019

Tự sửa đề luôn à :v

Chế giỏi dzữ .-.