\(\left(a+c\right)\left(b+c\right)=4c^2\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2021

Ta có:

sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)

Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)

có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)

Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)\(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)

MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)

\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)

Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)

Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

30 tháng 4 2020

\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)

\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)

Áp dụng BĐT Cosi ta có:

\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)

Từ (1)(2)(3) ta có:

\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)

Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)

Dấu "=" xảy ra <=> a=b=c=1

3 tháng 5 2020

CHÚC BAN HỌC GIỎI

NV
6 tháng 3 2020

\(\left(\frac{a}{c}+1\right)\left(\frac{b}{c}+1\right)=4\)

Đặt \(\left(\frac{a}{c};\frac{b}{c}\right)=\left(x;y\right)\Rightarrow xy+x+y=3\)

\(\Rightarrow3\le x+y+\frac{1}{4}\left(x+y\right)^2\Rightarrow x+y\ge2\)

\(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

\(P=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{2\left(x+y\right)+12}+\frac{3-\left(x+y\right)}{x+y}=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{2\left(x+y\right)+12}+\frac{3}{x+y}-1\)

Đặt \(x+y=t\Rightarrow2\le t< 3\)

\(\Rightarrow P=\frac{t^2+5t-6}{2t+12}+\frac{3}{t}-1=\frac{t}{2}+\frac{3}{t}-\frac{1}{2}\ge2\sqrt{\frac{3t}{2t}}-\frac{1}{2}=\frac{\sqrt{6}-1}{2}\)

Dấu "=" xảy ra khi \(t=\sqrt{6}\)

\(P=\frac{t^2+6}{2t}-\frac{5}{2}+2=\frac{1}{2}\left(\frac{t^2-5t+6}{2t}\right)+2=\frac{\left(t-2\right)\left(t-3\right)}{2t}+2\)

\(2\le t< 3\Rightarrow\left(t-2\right)\left(t-3\right)\le0\)

\(\Rightarrow P\le2\Rightarrow P_{max}=2\) khi \(t=2\)

23 tháng 3 2021

Bài 1

*Chứng minh bằng AM-GM

Áp dụng bất đẳng thức AM-GM ta có :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}\Rightarrow}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=b=c

23 tháng 3 2021

Bài 1

*Chứng minh bằng Cauchy-Schwarz

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\cdot\frac{9}{a+b+c}=9\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c

NV
25 tháng 10 2020

2.

\(xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}=-\frac{1}{2}\)

\(\Rightarrow yz=-\frac{1}{2}-x\left(y+z\right)=-\frac{1}{2}-x\left(-x\right)=x^2-\frac{1}{2}\)

Ta có:

\(x+y=-z\Leftrightarrow\left(x+y\right)^5=-z^5\)

\(\Leftrightarrow x^5+y^5+z^5=-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)

\(\Leftrightarrow x^5+y^5+z^5=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(\Leftrightarrow P=-5xy\left[\left(x+y\right)^3-xy\left(x+y\right)\right]\)

\(\Leftrightarrow P=-5xy\left[-z^3+xyz\right]=5xyz\left(z^2-xy\right)\)

\(\Leftrightarrow P=\frac{5}{2}xyz\left(z^2+\left(x+y\right)^2-2xy\right)=\frac{5}{2}xyz\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow P=\frac{5}{2}xyz=\frac{5}{2}x\left(x^2-\frac{1}{2}\right)\)

\(\Rightarrow P^2=\frac{25}{4}x^2\left(\frac{1}{2}-x^2\right)^2=\frac{25}{8}.2x^2\left(\frac{1}{2}-x^2\right)\left(\frac{1}{2}-x^2\right)\)

\(\Rightarrow P^2\le\frac{25}{8}\left(\frac{2x^2+\frac{1}{2}-x^2+\frac{1}{2}-x^2}{3}\right)^3=\frac{25}{216}\)

\(\Rightarrow P\le\frac{5\sqrt{6}}{36}\)

\(P_{max}=\frac{5\sqrt{6}}{36}\) khi \(x=-\frac{1}{\sqrt{6}}\)

NV
25 tháng 10 2020

3.

Xét \(Q=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)

\(Q^2=\frac{a^4}{b^2}+\frac{2a^2b}{c}+c^2+\frac{b^4}{c^2}+\frac{2b^2c}{a}+a^2+\frac{c^4}{a^2}+\frac{2c^2a}{b}+b^2-\left(a^2+b^2+c^2\right)\)

\(\Rightarrow Q^2\ge4\sqrt[4]{\frac{a^4.a^2b.a^2b.c^2}{b^2c^2}}+4\sqrt[4]{\frac{b^4.b^2c.c^2c.a^2}{c^2a^2}}+4\sqrt[4]{\frac{c^4.c^2a.c^2a.b^2}{a^2b^2}}-\left(a^2+b^2+c^2\right)\)

\(\Rightarrow Q^2\ge3\left(a^2+b^2+c^2\right)\Rightarrow Q\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

Đặt \(x=a^2+b^2+c^2\ge\frac{1}{3}\)

\(\Rightarrow P\ge2020\sqrt{3x}+\frac{1}{3x}=\sqrt{3x}+\sqrt{3x}+\frac{1}{3x}+2018\sqrt{3x}\)

\(\Rightarrow P\ge3\sqrt[3]{\frac{3x}{3x}}+2018.\sqrt{3.\frac{1}{3}}=2021\)

\(P_{min}=2021\) khi \(a=b=c=\frac{1}{3}\)

5 tháng 3 2020

Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)

Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bbcc.

Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a

Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1

Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)

⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)

Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.

6 tháng 3 2020

.....................?

9 tháng 11 2017

a2(b+c)2+5bc+b2(a+c)2+5ac4a29(b+c)2+4b29(a+c)2=49(a2(1a)2+b2(1b)2)(vì a+b+c=1)
a2(1a)29a24=(2x)(3x1)24(1a)20(vì )<a<1)
a2(1a)29a24
tương tự: b2(1b)29b24
P49(9a24+9b24)3(a+b)24=(a+b)943(a+b)24.
đặt t=a+b(0<t<1)PF(t)=3t24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13