Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bất đẳng thức AM - GM ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{\left(a+1\right)b^2}{b^2+1}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\)
Làm tương tự có hai bất đẳng thức với \(\frac{b+1}{c^2+1}\)và \(\frac{c+1}{a^2+1}\)sau đó cộng lại ta có:
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\left(a+1-\frac{ab+b}{2}\right)+\left(b+1-\frac{bc+c}{2}\right)+\left(c+1-\frac{ca+a}{2}\right)\)
\(=3+\frac{a+b+c-ab-bc-ca}{2}\).
Nếu ta chứng minh được \(a+b+c-ab-bc-ca\ge0\)ta sẽ có đpcm.
Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a+b+c\ge ab+bc+ca\).
Do đó ta có đpcm.
Đặt: \(A=\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}\), khi đó ta được:
\(A^2=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(+2\cdot\sqrt{\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)}+2\cdot\sqrt{\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)}+2\cdot\sqrt{\left(c^2+\frac{1}{c^2}\right)\left(a^2+\frac{1}{a^2}\right)}\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\sqrt{\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)}\ge\sqrt{\left(ab+\frac{1}{ab}\right)^2}=ab+\frac{1}{ab}\)
\(\sqrt{\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)}\ge\sqrt{\left(bc-\frac{1}{bc}\right)^2}=bc+\frac{1}{bc}\)
\(\sqrt{\left(c^2+\frac{1}{c^2}\right)\left(a^2+\frac{1}{a^2}\right)}\ge\sqrt{\left(ca+\frac{1}{ca}\right)^2}=ca+\frac{1}{ca}\)
Do đó ta có:
\(A^2\ge a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(ab+bc+ca+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(=\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\left(\frac{9}{a+b+c}\right)^2=82\)
Hay \(A\ge\sqrt{82}\), vậy bất đẳng thức được chứng minh.
Áp dụng bất đẳng thức Cô-si liên tục 2 lần ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}}\ge\frac{2}{\frac{\left(a+b-c\right)+\left(b+c-a\right)}{2}}=\frac{2}{\frac{2b}{2}}=\frac{2}{b}\)
Chứng minh tương tự ta cũng có :
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a};\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng theo vế của 3 bất đẳng thức trên ta được :
\(2\cdot\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Hay ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác ABC đều
\(a,b,c\)theo thứ tự lập thành cấp số cộng nên \(a-b=b-c\).
\(d\)là công sai của cấp số cộng.
Nếu \(d=0\)dễ dàng thấy đẳng thức cần chứng minh là đúng.
Nếu \(d\ne0\):
\(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{\sqrt{a}-\sqrt{b}}{a-b}+\frac{\sqrt{b}-\sqrt{c}}{b-c}=\frac{\sqrt{a}-\sqrt{c}}{a-b}\)
\(=\frac{a-c}{\left(a-b\right)\left(\sqrt{a}+\sqrt{c}\right)}=\frac{2}{\sqrt{a}+\sqrt{c}}\)
<br class="Apple-interchange-newline"><div></div>a,b,ctheo thứ tự lập thành cấp số cộng nên a−b=b−c.
dlà công sai của cấp số cộng.
Nếu d=0dễ dàng thấy đẳng thức cần chứng minh là đúng.
Nếu d≠0:
1√a+√b +1√b+√c =√a−√ba−b +√b−√cb−c =√a−√ca−b
=a−c(a−b)(√a+√c) =2√a+√c
Ta có đánh giá sau: \(a^2-\frac{3}{a}\le5a-7\) \(\forall a\in\left(0;3\right)\)
Thật vậy, BĐT tương đương:
\(a^3-5a^2+7a-3\le0\)
\(\Leftrightarrow\left(a-1\right)^2\left(a-3\right)\le0\) (luôn đúng \(\forall a\in\left(0;3\right)\)
Tương tự ta có: \(b^2-\frac{3}{b}\le5b-7\); \(c^3-\frac{3}{c}\le5c-7\)
Cộng vế với vế:
\(P\le5\left(a+b+c\right)-21=-6\)
\(\Rightarrow P_{max}=-6\) khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\text{VT}=\sum \frac{a+1}{b^2+1}=\sum [(a+1)-\frac{b^2(a+1)}{b^2+1}]=\sum (a+1)-\sum \frac{b^2(a+1)}{b^2+1}\)
\(=6-\sum \frac{b^2(a+1)}{b^2+1}\geq 6-\sum \frac{b^2(a+1)}{2b}=6-\sum \frac{ab+b}{2}\)
\(=6-\frac{\sum ab+3}{2}\geq 6-\frac{\frac{1}{3}(a+b+c)^2+3}{2}=6-\frac{3+3}{2}=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$