K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 1 2020

Lời giải:

Ta nhớ đến BĐT quen thuộc sau: Với $x,y,z>0$ thì:

\((x+y)(y+z)(z+x)\geq \frac{8}{9}(x+y+z)(xy+yz+xz)\)

Thay $(x,y,z)=(a^2,b^2,c^2)$ ta có:

$8\geq \frac{8}{9}(a^2+b^2+c^2)(a^2b^2+b^2c^2+c^2a^2)$

$\Rightarrow (a^2+b^2+c^2)(a^2b^2+b^2c^2+c^2a^2)\leq 9$

----------------------

Theo hệ quả của BĐT AM-GM thì:
\(abc(a+b+c)\leq a^2b^2+b^2c^2+c^2a^2\)

\((a+b+c)^2\leq 3(a^2+b^2+c^2)\)

\(\Rightarrow P\leq 3(a^2b^2+b^2c^2+c^2a^2)(a^2+b^2+c^2)\leq3.9=27\)

Vậy $P_{\max}=27$ khi $a=b=c=1$

13 tháng 3 2018

toán lớp 7 mà khó thế á ?

hay tại mình ngu? :)

13 tháng 3 2018

bn ơi đây là bài cuối trong 1 đề thi HSG thầy phát  cho mk

16 tháng 10 2016

Ta có : 

\(a^2=2c^2-2013+c^2\)

\(=3c^2-2013\)

\(\Rightarrow Q=5.\left(3c^2-2013\right)-7\left(2c^2-2013\right)-c^2\)

\(=15c^2-10065-14c^2+14091-c^2=4026\)

Vậy Q=4026

27 tháng 7 2016

Ta có

\(a^2=2c^2-2013+c^2=3c^2-2013\)

\(\Rightarrow Q=5\left(3c^2-2013\right)-7\left(2c^2-2013\right)-c^2=15c^2-10065-14c^2+14091-c^2=4026\)

27 tháng 7 2016

Thay b^2=2c^2-2013, ta co: a^2=2c^2-2013+c^2=3c^2-2013 => 5a^2=15c^2-10065

7b^2=7(2c^2-2013)=14c^2-14091

Suy ra Q=15c^2-10065-14c^2+14091-c^2=4026

27 tháng 7 2016

ta có a2=b2+c2=2c2-2013+c2=3c2-2013

ta có Q=5a2-7b2-c2=5(3c2-2013)-7(2c2-2013)-c2

                               =15c2-10065-14c2+14091-c2

                               =14091-10065

                               =4026

23 tháng 11 2020

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{a+c}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ac}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\Rightarrow M=1\)

10 tháng 9 2016

\(\frac{b}{a+b}=\frac{c}{b+c}=\frac{a}{a+c}\Rightarrow\frac{a+b}{b}=\frac{b+c}{c}=\frac{a+c}{a}\)

\(\Leftrightarrow\frac{a}{b}+1=\frac{b}{c}+1=\frac{c}{a}+1\)\(a,b,c>0\Rightarrow a+b+c\ne0\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{ab+bc+ac}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

29 tháng 3 2020

Bài 1 : Giải

Lưu ý : b2 = a.c ; c2 = b.d 

=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Ta có : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

=> \(M=\frac{a}{d}=\frac{1995}{2019}=\frac{1}{2}\)

Vậy M = 1/2

Bài 2 : 

Ta có : x - y cùng tính chẵn lẻ với x - y

           : y - 2 cùng tính chẵn lẻ với y  - 2 

          : 2 - x cùng tính chẵn lẻ với 2-x 

=> | x - y | + | y - 2 | + | 2 - x |  cùng tính chẵn lẻ với ( x- y ) + ( y - 2 ) + ( 2 - x ) 

    =  x -y + y - 2 + 2 - x     = 0 là 1 số chẵn 

=> | x - y | + | y - 2 | + | 2 - x | là 1 số chẵn 

=> không có x ; y ; z thỏa mãn điều kiện trên

30 tháng 3 2020

2 ở đâu ra hả bạn