Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(6=2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)\)
\(\ge4+\frac{c\left(a^3+b^3\right)}{a^2b^2}\ge4+\frac{c\left(a+b\right)}{ab}\)\(\Rightarrow\frac{c\left(a+b\right)}{ab}\in\text{(}0;2\text{]}\)
Áp dụng BĐT Cauchy-Schwarz lại có:
\(P\ge\frac{\left(bc+ca\right)^2}{2abc\left(a+b+c\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)\(\ge\frac{3c^2\left(a+b\right)^2}{2\left(ab+bc+ca\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)
\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left(1+\frac{ca}{ab}+\frac{bc}{ab}\right)^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)
\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left[1+\frac{c\left(a+b\right)}{ab}\right]^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)
Đặt \(x=\frac{c\left(a+b\right)}{ab}\left(x\in\text{(}0;2\text{]}\right)\) khi đó ta có:
\(P\ge\frac{3x^2}{2\left(1+x\right)^2}+\frac{4}{x}\) cần chứng minh \(P\ge\frac{8}{3}\Leftrightarrow\left(x-2\right)\left(7x^2+22x+12\right)\le0\forall x\in\text{(0;2]}\)
Vậy \(Min_P=\frac{8}{3}\) khi a=b=c=2
\(P=\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(b+1\right)\left(c+1\right)}+\frac{c^3}{\left(c+1\right)\left(a+1\right)}-1\)
Ta có:\(7\left(\frac{1}{a^2}+...\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2015\)
Mà \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le2015\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{6045}\)
\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+...\)
Mà \(\left(2+1\right)\left(2a^2+b^2\right)\ge\left(2a+b\right)^2\)(bất dẳng thức buniacoxki)
=> \(P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
Lại có \(\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)
=> \(P\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\le\frac{\sqrt{6045}}{3}\)
Vậy \(MaxP=\frac{\sqrt{6045}}{3}\)khi \(a=b=c=\frac{\sqrt{6045}}{2015}\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)thì bài toán thành
\(x+y+z=2\) chứng minh rằng
\(\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge\frac{1}{2}\)
Trước hết ta chứng minh:
Ta có: \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge\frac{3x}{4}\)
\(\Leftrightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)
\(\Rightarrow VP\ge\left(x+y+z\right)-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)
\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)
\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)
Áp dụng BĐT Cosi ta có:
\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)
Từ (1)(2)(3) ta có:
\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)
Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)
Dấu "=" xảy ra <=> a=b=c=1
Bài 3)
BĐT cần chứng minh tương đương với:
\(\left ( \frac{a}{a+b} \right )^2+\left ( \frac{b}{b+c} \right )^2+\left ( \frac{c}{c+a} \right )^2\geq \frac{1}{2}\left ( 3-\frac{a}{a+b}-\frac{b}{b+c}-\frac{c}{c+a} \right )\)
Để cho gọn, đặt \((x,y,z)=\left (\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)\) \(\Rightarrow xyz=1\).
BĐT được viết lại như sau:
\(A=2\left [ \frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2} \right ]+\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\) \((\star)\)
Ta nhớ đến hai bổ đề khá quen thuộc sau:
Bổ đề 1: Với \(a,b>0\) thì \(\frac{1}{(a+1)^2}+\frac{1}{(b+1)^2}\geq \frac{1}{ab+1}\)
Cách CM rất đơn giản, Cauchy - Schwarz:
\((a+1)^2\leq (a+b)(a+\frac{1}{b})\Rightarrow \frac{1}{(a+1)^2}\geq \frac{b}{(a+b)(ab+1)}\)
Tương tự với biểu thức còn lại và cộng vào thu được đpcm
Bổ đề 2: Với \(x,y>0,xy\geq 1\) thì \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)
Cách CM: Quy đồng ta có đpcm.
Do tính hoán vị nên không mất tổng quát giả sử \(z=\min (x,y,z)\)
\(\Rightarrow xy\geq 1\). Áp dụng hai bổ đề trên:
\(A\geq 2\left [ \frac{1}{xy+1}+\frac{1}{(z+1)^2} \right ]+\frac{2}{\sqrt{xy}+1}+\frac{1}{z+1}=2\left [ \frac{z}{z+1}+\frac{1}{(z+1)^2} \right ]+\frac{2\sqrt{z}}{\sqrt{z}+1}+\frac{1}{z+1}\)
\(\Leftrightarrow A\geq \frac{2(z^2+z+1)}{(z+1)^2}+\frac{1}{z+1}+2-\frac{2}{\sqrt{z}+1}\geq 3\)
\(\Leftrightarrow 2\left [ \frac{z^2+z+1}{(z+1)^2}-\frac{3}{4} \right ]+\frac{1}{z+1}-\frac{1}{2}-\left ( \frac{2}{\sqrt{z}+1}-1 \right )\geq 0\)
\(\Leftrightarrow \frac{(z-1)^2}{2(z+1)^2}-\frac{z-1}{2(z+1)}+\frac{z-1}{(\sqrt{z}+1)^2}\geq 0\Leftrightarrow (z-1)\left [ \frac{1}{(\sqrt{z}+1)^2}-\frac{1}{(z+1)^2} \right ]\geq 0\)
\(\Leftrightarrow \frac{\sqrt{z}(\sqrt{z}-1)^2(\sqrt{z}+1)(z+\sqrt{z}+2)}{(\sqrt{z}+1)^2(z+1)^2}\geq 0\) ( luôn đúng với mọi \(z>0\) )
Do đó \((\star)\) được cm. Bài toán hoàn tất.
Dấu bằng xảy ra khi \(a=b=c\)
P/s: Nghỉ tuyển lâu rồi giờ mới gặp mấy bài BĐT phải động não. Khuya rồi nên xin phép làm bài 3 trước. Hai bài kia xin khiếu. Nếu làm đc chắc tối mai sẽ post.
Bài 1:
Cho \(a=b=c=\dfrac{1}{\sqrt{3}}\). Khi đó \(M=\sqrt{3}-2\)
Ta sẽ chứng minh nó là giá trị nhỏ nhất
Thật vậy, đặt c là giá trị nhỏ nhất của a,b,c. Khi đó, ta cần chứng minh
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\frac{2(a^2+b^2+c^2)}{\sqrt{ab+ac+bc}}\geq(\sqrt3-2)\sqrt{ab+ac+bc}\)
\(\Leftrightarrow\sqrt{ab+ac+bc}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\sqrt{3(ab+ac+bc)}\right)\geq2(a^2+b^2+c^2-ab-ac-bc)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{a}-a-b+\frac{b^2}{c}+\frac{c^2}{a}-\frac{b^2}{a}-c+a+b+c-\sqrt{3(ab+ac+bc)}\geq\)
\(\geq2((a-b)^2+(c-a)(c-b))\)
\(\Leftrightarrow(a-b)^2\left(\frac{1}{a}+\frac{1}{b}-2\right)+(c-a)(c-b)\left(\frac{1}{a}+\frac{b}{ac}-2\right)+a+b+c-\sqrt{3(ab+ac+bc)}\geq0\)
Đúng bởi \(\frac{1}{a}+\frac{1}{b}-2>0;\frac{1}{a}+\frac{b}{ac}-2\geq\frac{1}{a}+\frac{1}{a}-2>0\) và
\(a+b+c-\sqrt{3(ab+ac+bc)}=\frac{(a-b)^2+(c-a)(c-b)}{a+b+c+\sqrt{3(ab+ac+bc)}}\geq0\)
BĐT đã được c/m. Vậy \(M_{Min}=\sqrt{3}-2\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)
P/s: Nhìn qua thấy ngon mà làm mới thấy thật sự là "choáng"
\(P=\frac{bc}{2ab+ac}+\frac{ca}{2ab+bc}+\frac{4ab}{bc+ca}\)
Xét \(Q=P+3=\frac{bc}{2ab+ac}+1+\frac{ca}{2ab+bc}+1+\frac{4ab}{bc+ca}+1\)
\(Q=\frac{2ab+ac+bc}{2ab+ac}+\frac{2ab+ac+bc}{2ab+bc}+\frac{4ab+bc+ca}{bc+ca}\)
\(=\left(2ab+ac+bc\right)\left(\frac{1}{2ab+ac}+\frac{1}{2ab+bc}\right)+\frac{4ab+bc+ca}{bc+ca}\)
\(\ge\left(2ab+ac+bc\right)\frac{4}{4ab+ac+bc}+\frac{4ab+bc+ca}{bc+ca}=K\)(Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a, b không âm)
\(K=\frac{2\left(4ab+ac+bc\right)+2\left(ac+bc\right)}{4ab+ac+bc}+\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\)\(+\frac{7\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\)
\(=2+\left[\frac{2\left(ac+bc\right)}{4ab+ac+bc}+\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\right]+\frac{7}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\)
\(\ge2+2\sqrt{\frac{2\left(ac+bc\right)}{4ab+ac+bc}.\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}}+\frac{7}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\)(Áp dụng BĐT Cô - si cho 2 số không âm)
\(=\frac{37}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\)
Mặt khác: \(6=2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)=\frac{2\left(a^2+b^2\right)}{ab}+\frac{c\left(a^3+b^3\right)}{a^2b^2}\)
\(=\frac{2\left(a^2+b^2\right)}{ab}+\frac{c\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2b^2}\)\(\ge\frac{2.2ab}{ab}+\frac{c\left(a+b\right)\left(2ab-ab\right)}{a^2b^2}=4+\frac{ac+bc}{ab}\)(theo BĐT \(a^2+b^2\ge2ab\))
\(\Rightarrow\frac{ac+bc}{ab}\le2\Leftrightarrow\frac{ab}{ac+bc}\ge\frac{1}{2}\)
\(\Rightarrow K\ge\frac{37}{9}+\frac{7}{9}.\frac{4ab}{ac+bc}\ge\frac{37}{9}+\frac{7}{9}.\frac{4}{2}=\frac{17}{3}\)
Ta có \(Q=P+3\ge K\ge\frac{17}{3}\Rightarrow P\ge\frac{17}{3}-3=\frac{8}{3}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}2ab+ac=2ab+bc\\\frac{2\left(ac+bc\right)}{4ab+ac+bc}=\frac{2\left(4ab+bc+ca\right)}{9\left(ac+bc\right)}\\a=b\end{cases}}\)\(\Leftrightarrow a=b=c\)
Từ \(2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)=6\Rightarrow6=\frac{c\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2b^2}+\frac{2\left(a^2+b^2\right)}{ab}\)
ta có \(a^2+b^2\ge2ab\Rightarrow6=\frac{c\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2b^2}+\frac{2\left(a^2+b^2\right)}{ab}\ge\frac{c\left(a+b\right)}{ab}+4\)
\(\Rightarrow0< \frac{c\left(a+b\right)}{ab}\le2\)
Lại có
\(\frac{bc}{a\left(2b+c\right)}+\frac{ac}{b\left(2a+c\right)}=\frac{\left(bc\right)^2}{abc\left(2b+c\right)}+\frac{\left(ac\right)^2}{abc\left(2a+c\right)}\ge\frac{\left(bc+ac\right)^2}{2abc\left(a+b+c\right)}\)\(=\frac{\left[c\left(a+b\right)\right]^2}{2abc\left(a+b+c\right)}\)
và \(abc\left(a+b+c\right)=ab\cdot bc+bc\cdot ba+ab\cdot ca\le\frac{\left(ab+bc+ca\right)^2}{3}\)
\(\Rightarrow\frac{bc}{a\left(2b+c\right)}+\frac{ac}{b\left(2a+c\right)}\ge\frac{3}{2}\left(\frac{c\left(a+b\right)}{ab+bc+ca}\right)^2=\frac{3}{2}\left(\frac{\frac{c\left(a+b\right)}{ab}}{1+\frac{c\left(a+b\right)}{ab}}\right)^2\)
Đặt \(t=\frac{c\left(a+b\right)}{ab}\Rightarrow P\ge\frac{3t^2}{2\left(1+t\right)^2}+\frac{4}{t}\left(0< t\le2\right)\)
Có \(\frac{3t^2}{2\left(1+t\right)^2}+\frac{4}{t}=\left(\frac{3t^2}{\left(1+t\right)^2}+\frac{4}{t}-\frac{8}{3}\right)+\frac{8}{3}=\frac{-7t^2-8t^2+32t+24}{6t\left(1+t\right)^2}+\frac{8}{3}\)
\(=\frac{\left(t-2\right)\left(-7t^2-22t-12\right)}{6t\left(1+t\right)^2}\ge0\forall t\in(0;2]\)
=> \(\frac{\left(t-2\right)\left(-7t^2-22t-12\right)}{6t\left(1+t\right)^2}+\frac{8}{3}\ge\frac{8}{3}\forall t\in(0;2]\frac{1}{2}\)
Dấu "=" xảy ra <=> t=2 hay a=b=c