Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như là CMR >\(A+B>\left(\sqrt{2013}+\sqrt{2014}\right)^2\)
Do \(ab>2013a+2014b\)
\(\Rightarrow1>\frac{2013}{b}+\frac{2014}{a}\)
\(\Rightarrow a+b>\frac{2013}{b}\left(a+b\right)+\frac{2014}{a}\left(a+b\right)=2013+\frac{2013a}{b}+\frac{2014b}{a}+2014\)
Áp dụng BĐT Cô si với a,b>0 ta có:
\(\frac{2013a}{b}+\frac{2014b}{a}\ge2\sqrt{\frac{2013a}{b}.\frac{2014b}{a}}=2\sqrt{2013.2014}\)
\(\Rightarrow a+b>2013+2\sqrt{2013.2014}+2014=\left(\sqrt{2013}+\sqrt{2014}\right)^2\)
Áp dụng bđt Bunhiacopski ta có
\(\sqrt{c}.\sqrt{a-c}+\sqrt{c}.\sqrt{b-c}\le\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2}+\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2}.\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{c+b-c}.\sqrt{c+a-c}=\sqrt{ab}\left(đpcm\right)\)
Bu-nhi-a-cốp-ski: (ab+cd)2 \(\le\)( a2 + c2 )( b2 + d2 ) mà bạn.
a) Bất đẳng thức đúng khi a = b = 2c
do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)
xảy ra khi n = 1
Thật vậy, ta có :
\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Vậy n nhỏ nhất là 1
b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)
Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)
do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)
\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
\(\sqrt{\frac{a}{1-a}}=\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)(BĐT Cosi)
Tương tự \(\sqrt{\frac{b}{1-b}}\ge\frac{2b}{a+b+c}\) và \(\sqrt{\frac{c}{1-c}}\ge\frac{2c}{a+b+c}\)
\(\Rightarrow\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra \(\Leftrightarrow a=b+c;b=a+c;c=a+b\Rightarrow a+b+c=0\) (KTM)
Vậy \(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)
ta có :
\(ab>2016a+2017b\Rightarrow a\left(b-2016\right)>2017b\) hay ta có : \(a>\frac{2017b}{b-2016}\)
Vậy \(a+b>\frac{2017b}{b-2016}+b=b+2017+\frac{2016\times2017}{b-2106}=b-2016+\frac{2016\times2017}{b-2106}+2016+2017\)
\(\ge2\sqrt{2016\times2017}+2016+2017=\left(\sqrt{2016}+\sqrt{2017}\right)^2\)
Vậy ta có đpcm
a) sửa đề: \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra \(\Leftrightarrow\) a = b
b) Đề hỏi gì vậy bn?
Có ab > 2013a + 2014b <=> 1 > 2013/b + 2014/a (vì a,b >0 )
\(\Leftrightarrow a+b>\frac{2013\left(a+b\right)}{b}+\frac{2014\left(a+b\right)}{a}=2013+2014+\frac{2013a}{b}+\frac{2014b}{a}\)
Mà \(\frac{2013a}{b}+\frac{2014b}{a}\ge2\sqrt{2013\cdot2014}\)
\(\Rightarrow a+b>2013+2014+2\sqrt{2013\cdot2014}=\left(\sqrt{2013}+\sqrt{2014}\right)^2\)
=> đpcm
Tích cho mk nhoa !!!! ~~~
\(4\sqrt[4]{a}+7\sqrt[7]{b}\ge11\sqrt[11]{ab}\)