Cho các số thực dương a,b. Mệnh đề nào sau đây đúng?

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

ta có \(\left(log^b_a+log^a_b+2\right)\left(log^b_a-log_{ab}^b\right).log_b^a-1=\left(log^b_a+log^a_b+2\right)\left(log^b_a.log_b^a-log_{ab}^b.log_b^a\right)-1=\left(log^b_a+log^a_b+2\right)\left(1-\frac{1}{log_b^{ba}}log_b^a\right)-1=\left(log^b_a+log^a_b+2\right)\left(1-\frac{1}{1+log^a_b}log^a_b\right)-1=\left(log^b_a+log^a_b+2\right)\frac{1}{1+log^a_b}-1=\left(log^a_b+\frac{1}{log^a_b}+2\right)\frac{1}{1+log^a_b}-1=\frac{\left(1+log^a_b\right)^2}{log^a_b}\frac{1}{1+log^a}-1=\frac{1+log^a_b}{log_b^a}-1=\frac{1}{log_b^a}\)

3 tháng 10 2015

 ta có:

\(\left(log^b_a+\frac{1}{log^b_a}+2\right)\left(log^b_a-\frac{1}{log^{ab}_a}\right)log^a_b-1\)\(=\frac{\left(log^b_a+1\right)^2}{log^b_a}\left(log^b_a-\frac{1}{1+log^b_a}\right)log^a_b-1\)\(=\frac{\left(log^b_a+1\right)^2}{log^b_a}\left(1-\frac{log^a_b}{1+log^b_a}\right)-1\)\(==\frac{\left(log^b_a+1\right)^2}{log^b_a}\left(\frac{1}{1+log^b_a}\right)-1=\frac{1+log^b_a}{log^b_a}-1=\frac{1}{log^b_a}\)

1 tháng 2 2016

Áp dụng BĐT tam giác ta có:

a+b>c =>c-a<b =>c2-2ac+a2<b2

a+c>b =>b-c <a =>b2-2bc+c2<a2

b+c>a =>a-b<c =>a2-2ab+b2<c2

Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2

<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2

<=>-2(ab+bc+ca)<-(a2+b2+c2)

<=>2.(ab+bc+ca)<a2+b2+c2

 

2 tháng 10 2015

ta có \(log^{27}_2=log^{3^3}_2=3log^3_2=a\Rightarrow log^3_2=\frac{a}{3}\)

mặt khác

\(log^{\sqrt[6]{2}}_{\sqrt{3}}=\frac{1}{log^{\sqrt{3}}_{\sqrt[6]{2}}}=\frac{1}{log^{3^{\frac{1}{2}}}_{2^{\frac{1}{6}}}}=\frac{1}{\frac{1}{2}log^3_{2^{\frac{1}{6}}}}=\frac{1}{\frac{1}{2}\frac{1}{\frac{1}{6}}log_2^3}=\frac{1}{3.log_2^3}=\frac{1}{3}.\frac{a}{3}=\frac{a}{9}\)

2 tháng 2 2016

\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)

\(A=\left(1-\frac{1}{\frac{\left(1+2\right).2}{2}}\right)\left(1-\frac{1}{\frac{\left(1+3\right).3}{2}}\right)...\left(1-\frac{1}{\frac{\left(1+2006\right).2006}{2}}\right)\)

\(A=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}...\frac{2007.2006-2}{2006.2007}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}....\frac{2007.2006-2}{2006.2007}\) (1)

xét thấy:2007.2006-2=2006.(2008-1)+2006-2008=2006.(2008-1+1)-2008=2008.(2006-1)=2008.2005 (2)

(1),(2)\(=>A=\frac{4.1}{2.3}.\frac{5.2}{3.4}.\frac{6.3}{4.5}....\frac{2008.2005}{2006.2007}\)

\(A=\frac{\left(4.5.6...2008\right)\left(1.2.3...2005\right)}{\left(2.3.4....2006\right)\left(3.4.5...2007\right)}=\frac{2008}{2006.3}=\frac{1004}{3009}\)

Vậy A=1004/3009

17 tháng 3 2017

dung hay sai zday

2 tháng 10 2015

ta áp dụng công thức \(log_a^{x_1x_2...x_n}=log_a^{x_1}+log_a^{x_2}+...+log_a^{x_n}\)  ta có 

\(log_2^{600}=log_2^{25.8.3}=log_2^{25}+log_2^8+log_2^3=2log_2^5+3+log_2^3=2b+3+a\)

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

12 tháng 11 2016

Toán lớp 7 mà vào đăng vào trang lớp 6 chi vậy ? Thanh Huyền

 

3 tháng 10 2015

 ta có:

\(log^{\left(2a^2\right)}_2+\left(log_2^a\right)a^{log_a^{\left(log^a_1+1\right)}}+\frac{1}{2}log^2_2a^4=log_2^2+log_2^{a^2}+log_2^a\left(log^a_2+1\right)+\frac{1}{2}log^2_2a^4\)

\(=1+2log^a_2+log^a_2\left(1+log^a_2\right)+2log^2a_2\)

\(=3log^2_2a+3log^a_2+1\)