\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}.\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

15 tháng 10 2017

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

Sửa đề:  Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)

Áp dụng bđt Cauchy-Schwarz ta có:

\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)

Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

          \(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

9 tháng 7 2017

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

 
7 tháng 9 2016

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

7 tháng 9 2016

Bạn nói rõ hơn được không???

22 tháng 5 2017

\(a=b=c=1\)

22 tháng 5 2017

Dấu bằng xảy ra thì ai mà chẳng biết

NV
27 tháng 4 2020

\(VT=\frac{1}{a^2+b^2+c^2}+\frac{a+b+c}{abc}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(VT\ge\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(VT\ge\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

\(VT\ge\frac{9}{\left(a+b+c\right)^2}+\frac{21}{\left(a+b+c\right)^2}=30\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

1 tháng 2 2020

\(2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\)

Thay thế \(a+b+c=1\)

\(\Leftrightarrow2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{2a+b+c}{b+c}+\frac{a+2b+c}{a+c}+\frac{a+b+2c}{a+b}\)

\(\Leftrightarrow2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}+3\)

\(\Leftrightarrow\frac{2b}{a}+\frac{2c}{b}+\frac{2a}{c}\ge\frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}+3\)

\(\Leftrightarrow\left(\frac{2b}{a}-\frac{2b}{a+c}\right)+\left(\frac{2c}{b}-\frac{2c}{a+b}\right)+\left(\frac{2a}{c}-\frac{2a}{b+c}\right)\ge3\)

\(\Leftrightarrow\frac{2bc}{a\left(a+c\right)}+\frac{2ca}{b\left(a+b\right)}+\frac{2ab}{c\left(b+c\right)}\ge3\)

\(\Leftrightarrow\frac{bc}{a\left(a+c\right)}+\frac{ca}{b\left(a+b\right)}+\frac{ab}{c\left(b+c\right)}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{\left(bc\right)^2}{abc\left(a+c\right)}+\frac{\left(ca\right)^2}{abc\left(a+b\right)}+\frac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\frac{3}{2}\)

Áp dụng bất đẳng thức cộng mẫu số 

\(\Rightarrow\frac{\left(bc\right)^2}{abc\left(a+c\right)}+\frac{\left(ca\right)^2}{abc\left(a+b\right)}+\frac{\left(ab\right)^2}{abc\left(b+c\right)}\)

\(\ge\frac{\left(ab+bc+ca\right)^2}{abc\left(a+b+c+a+b+c\right)}=\frac{\left(ab+bc+ca\right)^2}{2abc}\)

Chứng minh rằng : \(\frac{\left(ab+bc+ca\right)^2}{2abc}\ge\frac{3}{2}\)

\(\Leftrightarrow2\left(ab+bc+ca\right)^2\ge6abc\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\ge3abc\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\ge3abc\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}a^2b^2+b^2c^2\ge2\sqrt{a^2b^4c^2}=2ab^2c\\b^2c^2+c^2a^2\ge2\sqrt{a^2b^2c^4}=2abc^2\\a^2b^2+c^2a^2\ge2\sqrt{a^2b^2c^2}=2a^2bc\end{cases}}\)

\(\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(đpcm\right)\)

Vì \(\frac{\left(ab+bc+ca\right)^2}{2abc}\ge\frac{3}{2}\)

Vậy \(\frac{\left(bc\right)^2}{abc\left(a+c\right)}+\frac{\left(ca\right)^2}{abc\left(a+b\right)}+\frac{\left(ab\right)^2}{abc\left(b+c\right)}\ge\frac{3}{2}\)

\(\Leftrightarrow2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\left(đpcm\right)\)

Chúc bạn học tốt !!!

14 tháng 3 2019

Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi