Cho các số thực dương a, b, c thỏa mãn a + b + c = 4
...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{ab}+\frac{1}{ac}\ge\frac{\left(1+1\right)^2}{ab+ac}=\frac{4}{a\left(b+c\right)}\)(1)

Áp dụng bất đẳng thức AM-GM ta có :

\(a\left(b+c\right)\le\frac{\left(a+b+c\right)^2}{4}=4\Rightarrow\frac{4}{a\left(b+c\right)}\ge1\)(2)

Từ (1) và (2) \(\Rightarrow\frac{1}{ab}+\frac{1}{ac}\ge\frac{4}{a\left(b+c\right)}\ge1\Rightarrow\frac{1}{ab}+\frac{1}{ac}\ge1\left(đpcm\right)\)

Đẳng thức xảy ra <=> a = 2 ; b = c = 1 

27 tháng 7 2021

\(T=x^4+y^4+z^4\)

áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)

\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)

\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)

dấu "=" xảy rakhi và chỉ khi

\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)

vậy dấu "=" có xảy ra

\(< =>MIN:T=\frac{4}{3}\)

27 tháng 7 2021

sửa dòng 3 dưới lên 

\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)

Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)

30 tháng 10 2020

các bạn giúp mn vs

3 tháng 7 2019

Ta có \(a^4+ab^3=2a^3b^2\)

Do a>0

=> \(a^3+b^3=2a^2b^2\)

<=> \(\frac{a}{b^2}+\frac{b}{a^2}=2\)

Đặt \(\frac{a}{b^2}=x;\frac{b}{a^2}=y\)(x,y là số hữu tỉ)

=>\(\hept{\begin{cases}x+y=2\\x.y=\frac{1}{ab}\end{cases}}\)=> \(\hept{\begin{cases}x=2-y\\xy=\frac{1}{ab}\end{cases}}\)

=> \(\sqrt{1-\frac{1}{ab}}=\sqrt{1-y\left(2-y\right)}=\sqrt{y^2-2y+1}=|y-1|\)là số hữu tỉ

=> ĐPCM

Vậy \(\sqrt{1-\frac{1}{ab}}\)là số hữu tỉ

3 tháng 1 2021

check lại đề phát bạn; chẳng lẽ người ra đề lại rảnh đến mức cho 2017, 2018, 2/3 đứng 3 nơi như vậy.

3 tháng 1 2021

bạn tách phân thức ấy ra rồi dùng bđt cô-si nhé ( nếu đề không sai )

9 tháng 8 2016

a)
Xét hiệu \(\frac{a^3}{a^2+1}-\frac{1}{2}=\frac{2a^3-a^2-1}{2\left(a^2+1\right)}=\frac{2a^2\left(a-1\right)+\left(a-1\right)\left(a+1\right)}{2\left(a^2+1\right)}=\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\)
Do : \(a\ge1\Rightarrow a-1\ge0\)
\(a^2+a+1=\left(a+\frac{1}{4}\right)^2+\frac{3}{4}>0\Rightarrow2a^2+a+1>0\)
\(a^2+1>0\)
\(\Rightarrow\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\ge0\Leftrightarrow\frac{a^3}{a^2+1}-\frac{1}{2}\ge0\Leftrightarrow\frac{a^3}{a^2+1}\ge\frac{1}{2}\)
Tương tự \(\frac{b^3}{b^2+1}\ge\frac{1}{2};\frac{c^3}{c^2+1}\ge\frac{1}{2}\)
\(\Rightarrow\frac{a^3}{a^2+1}+\frac{b^3}{b^2+1}+\frac{c^3}{c^2+1}\ge\frac{3}{2}\)Dấu = xảy ra khi a=b=c=1

9 tháng 8 2016

Câu b cũng xét hiệu tương tự cấu a