\(\frac{a^2}{b}+\frac{b^2}{a}+7\left(a+b\right)\ge8\sqrt{2\left(a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt b+c=x;c+a=y;a+b=z

sau đó viết lại bđt rồi dùng cô si,nếu ko làm đc thì mình sẽ viết cụ thể cho

18 tháng 9 2017

 a) có nhiều cách chứng minh 
P = a/(b+c) + b/(c+a) + c/(a+b) 
P + 3 = 1+ a/(b+c) + 1+ b/(c+a) + 1+ c/(a+b) 
P + 3 = (a+b+c)/(b+c) + (a+b+c)/(b+c) + (a+b+c)/(c+a) 
P + 3 = (a+b+c)[1/(b+c) + 1/(c+a) + 1/(a+b)] (*) 

ad bđt cô si cho 3 số: 
2(a+b+c) = (a+b) + (b+c) + (c+a) ≥ 3.³√(a+b)(b+c)(c+a) 
1/(b+c) + 1/(c+a) + 1/(a+b) ≥ 3.³√1/(a+b)(b+c)(c+a) 

nhân lại vế theo vế 2 bđt: 2(a+b+c)[1/(b+c) + 1/(c+a) + 1/(a+b)] ≥ 9 
=> P + 3 ≥ 9/2 => P ≥ 3/2 (đpcm) ; dấu "=" khi a = b = c 
- - - 
cách khác: P = a/(b+c) + b/(c+a) + c/(a+b) 
M = b/(b+c) + c/(c+a) + a/(a+b) 
N = c/(b+c) + a/(c+a) + b/(a+b) 

Thấy: M + N = 3 
P + M = (a+b)/(b+c) + (b+c)/(c+a) + (c+a)/(a+b) ≥ 3 (cô si cho 3 số) 
P + N = (a+c)/(b+c) + (b+a)/(c+a) + (c+b)/(a+b) ≥ 3 (cô si) 

=> 2P + M + N ≥ 6 => 2P + 3 ≥ 6 => P ≥ 3/2 (đpcm) ; đẳng thức khi a = b = c 
-------------- 
b) ad bđt Bunhia: 1² = [2.(2x) + 1.y]² ≤ (2²+1²)(4x²+y²) => 4x² + y² ≥ 1/5 (đpcm) 
dấu "=" khi 2x/2 = y/1 và 4x+y = 1 <=> x = y = 1/5 
- - - 
Có thể không cần Bunhia, ad bđt a² + b² ≥ 2ab (*) 
(*) quá hiển nhiên từ (a-b)² ≥ 0 
x² + 1/25 ≥ 2x/5 <=> 4x² ≥ 8x/5 - 4/25 (1*) 
y² + 1/25 ≥ 2y/5 <=> y² ≥ 2y/5 - 1/25 (2*) 

lấy (1*)+(2*) => 4x²+y² ≥ 8x/5+2y/5 - 4/25 - 1/25 = 2(4x+y)/5 - 5/25 = 1/5 (đpcm) 
dấu "=" khi x = y = 1/5 
------------- 
c) ad bđt cô si cho 3 số: 
ab/c + bc/a + ca/b ≥ 3.³√(ab/c)(bc/a)(ca/b) = 3.³√abc 
- - - - 
nếu như đề đã ghi, thay a = b = c = 2 thì VT = 2+2+2 = 6 < VP = 2.2.2 = 8  

19 tháng 9 2017

*C/m: \(9(a+b)(b+c)(c+a)\ge8(a+b+c)(ab+bc+ac)\)

\(\Leftrightarrow a^2b+ab^2+a^2c+ac^2+b^2c+bc^2-6abc\ge0\)

\(VT=a^2b+ab^2+a^2c+ac^2+b^2c+bc^2\ge6\sqrt[6]{\left(abc\right)^6}=VP\)

Khi \(a=b=c\)

# Dôn lùng đợi chiều tối về t giải phần căn bậc 4 kia cho :)

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

12 tháng 3 2017

Ta có:

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{9-5}{2}=2\)

Suy ra  \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

Tương tự, ta áp dụng với hai biến thực dương còn lại, thu được:

\(\hept{\begin{cases}b+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\\c+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\end{cases}}\)

Khi đó, ta nhân vế theo vế đối với ba đẳng thức trên, nhận thấy:   \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\right]^2\)

\(\Rightarrow\)  \(\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\)  (do  \(a,b,c>0\)  )

nên   \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)

\(=\frac{2\left(\sqrt{ab}+\sqrt{ca}+\sqrt{ca}\right)}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

\(\Rightarrow\) \(đpcm\)

22 tháng 4 2020

jh hutn jnoh lhgvhx

22 tháng 4 2020

Ta có : 2(a2  + b2 ) - ( a + b) -a2 -2ab + b2 =( a-b)\(\ge0\)

=> 2(a2 + b2 ) \(\ge\left(a+b\right)^2\)

tương tự : 2(b2 +c2 ) \(\ge\)( b + c)2 

                   2 (c2 + a2\(\ge\)( c + a)2 

=> P \(\le\frac{c}{a+b+1}+\frac{a}{b+c+1}+\frac{b}{c+a+1}\)

\(\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}\)( do  a ,b, c \(\le1\))

\(\frac{a+b+c}{a+b+c}=1\)

Vậy Max P = 1 <=> a = b = c =1

NV
20 tháng 6 2020

\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\right)=20\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2019\)

\(\Leftrightarrow7\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=20\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2019\)

\(\Rightarrow7\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\frac{20}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2019\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le6057\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\sqrt{673}\)

Ta có:

\(\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}\ge\sqrt{\left(2a+b\right)^2}=2a+b\)

\(\Rightarrow\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)

Tương tự: \(\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\frac{1}{9}\left(\frac{2}{b}+\frac{1}{c}\right)\) ; \(\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\frac{1}{9}\left(\frac{2}{c}+\frac{1}{a}\right)\)

Cộng vế với vế:

\(P\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\sqrt{673}\)

\(P_{max}=\sqrt{673}\) khi \(a=b=c=\frac{1}{\sqrt{673}}\)

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

NV
18 tháng 10 2019

Cho dễ nhìn thì \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\)

\(x+y+z=3\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)

\(\Rightarrow xy+yz+zx=2\)

\(VT=\sum\frac{x}{x^2+2}=\sum\frac{x}{x^2+xy+yz+zx}=\sum\frac{x}{\left(x+y\right)\left(x+z\right)}\)

\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{4}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(VP=\frac{4}{\sqrt{\left(x+y\right)\left(x+z\right)\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(z+x\right)}}=\frac{4}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=VT\) (đpcm)