Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có lẽ xài viete.
a+b+c=abc <=> b+c=abc-a=a.(2a2-1)=2a3-a
mà bc=2a2=> b,c là nghiệm của phương trình \(x^2-\left(2a^3-a\right)x+2a^2=0\)
để phương trình có nghiệm thì \(\Delta=\left(2a^3-a\right)^2-8a^2\ge0\Leftrightarrow a^2\left[\left(2a^2-1\right)^2-8\right]\ge0\)
\(\Leftrightarrow2a^2-1\ge2\sqrt{2}\Leftrightarrow a^2\ge\frac{1+2\sqrt{2}}{2}\Leftrightarrow a\ge\sqrt{\frac{1+2\sqrt{2}}{2}}\)(đpcm)
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
VT=\(\frac{a^2}{ab+\frac{1}{b}}+\frac{b^2}{bc+\frac{1}{c}}+\frac{c^2}{ca+\frac{1}{a}}\)
áp dụng bđt cộng mẫu đc VT \(\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{\left(a+b+c\right)^2}{ab+bc+ca+\frac{ab+bc+ca}{abc}}\left(1\right)\)
Ta có \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\forall a,b,c\)
Nên \(\left(1\right)\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+\frac{\left(a+b+c\right)^2}{3abc}}=\frac{1}{\frac{1}{3}+\frac{1}{3abc}}=\frac{3abc}{1+abc}\left(đccm\right)\)
dấu bằng xảy ra <> a=b=c
Vì abc=1 nên có: \(a^3+b^3+c^3+3=\frac{a^3+b^3+c^3}{abc}+3=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\)
\(\ge\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\)(1)
Đặt: \(\frac{a}{b+c}=X;\frac{b}{c+a}=Y;\frac{c}{a+b}=Z\)
Ta có: \(4X^2+4Y^2+4Z^2+3-4X-4Y-4Z=\left(2X-1\right)^2+\left(2Y-1\right)^2+\left(2Z-1\right)^2\ge0\)
=> \(4Z^2+4Y^2+4Z^2+3\ge4X+4Y+4Z=4\left(X+Y+Z\right)\)
=> \(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
=> \(a^3+b^3+c^3+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
"=" xảy ra <=> a =b =c =1.\(\)
\(a+b+c=abc\Rightarrow bc=\frac{a+b+c}{a}=1+\frac{b}{a}+\frac{c}{a}\)(với a,b,c khác 0)
Mặt khác :
\(1+\frac{b}{a}+\frac{c}{a}\ge1+2\sqrt{\frac{bc}{a^2}}=1+2\sqrt{\frac{a^2}{a^2}}=3\)\(\Rightarrow bc\ge3\)
Mà \(bc=a^2\Rightarrow a^2\ge3\)(Đpcm)