K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 11 2019

Giả sử các biểu thức đều xác định

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}c=2\\a=2\\b=2\end{matrix}\right.\)

7 tháng 10 2015

Thay 1 = abc ta có: \(a+b+c=\frac{abc}{a}+\frac{abc}{b}+\frac{abc}{c}\)

<=> a + b + c = bc + ac + ab

<=> (a - ac) + (b - bc) + (c - ab) = 0 

<=> a(1 - c) + b(1 - c) + (c - \(\frac{1}{c}\)) = 0 

<=> ca(1 - c) + cb(1 - c) + (c - 1)(c + 1) = 0 

<=> (1 - c)(ca + cb - c - 1) = 0 

<=> (1 - c)[c(a -1) + (cb - abc)]= 0 

<=> (1 - c)[c(a - 1) + cb(1 - a)]= 0 

<=> (1 - c)(a - 1)(c - cb) = 0

<=> (1 - c)(a - 1)(1 - b).c = 0 <=> a = 1 hoặc b = 1 hoặc c = 1

Vậy.... 

7 tháng 10 2015

http://olm.vn/hoi-dap/question/179947.html

9 tháng 7 2019

\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)=> \(a+b+c=\frac{ab+bc+ac}{abc}=ab+bc+ac\)

Ta có \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(abc-1\right)+a+b+c-ab-bc-ac=0\)

=> có ít nhất 1 trong 3 số a,b,c bằng 1

Vậy có ít nhất 1 trong 3 số a,b,c bằng 1

13 tháng 1 2019

biến đổi tương đương đưa về (a-1)(b-1)(c-1)=0

13 tháng 1 2019

Ta có : \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow a+b+c=\frac{ab+bc+ac}{abc}\)

\(\Leftrightarrow a+b+c=ab+bc+ac\left(abc=1\right)\)

\(\Leftrightarrow1+a+b+c-ab-bc-ac-1=0\)

\(\Leftrightarrow abc+a+b+c-ab-bc-ac-1=0\)

\(\Leftrightarrow ab\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)+c-1=0\)

\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

\(\Leftrightarrow\)a = 1 hoặc b = 1 hoặc c = 1

=> Đpcm 

8 tháng 1 2022

Từ a+b+c=0 => b+c=-a 

Theo đề ra ta có a+ b3 + c= 0 

=> a3 + (b+c)(b2 - bc + c2 )=0 

<=> a3- a[(b + c )2 -3bc]= 0 

<=> a3- [( -a )2 - 3bc] = 0 

<=> a3 -  a3 +3bc = 0 

<=> 3bc= 0 

<=> a =0 hoặc b=0 hoặc c=0 ( đpcm) 

cho mik điểm nha bạn ơiii

 

14 tháng 3 2017

ta có: \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow a+b+c=\frac{ab+bc+ca}{abc}=ab+bc+ca\)

\(\Leftrightarrow a+b+c-ab-bc-ca=0\)

\(\Leftrightarrow abc-ab-bc-ca+a+b+c-1=0\)(vì abc=1)

tự phân tích sẽ ra là \(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

suy ra một trong 3 số =1

26 tháng 8 2015

Bài 1. Từ giả thiết, với chú ý abc=1, ta suy ra \(\left(a+b\right)+c=\frac{a+b}{ab}+\frac{1}{c}=c\left(a+b\right)+\frac{1}{c}\to\left(a+b\right)\left(c-1\right)=\frac{c^2-1}{c}\to\left(c-1\right)\left(a+b-\frac{c+1}{c}\right)=0\)

\(\to\frac{\left(c-1\right)\left(ac+bc-c-1\right)}{c}=0\to\left(c-1\right)\left(\frac{1}{b}-1+c\left(b-1\right)\right)=0\to\left(c-1\right)\left(b-1\right)\left(c-\frac{1}{b}\right)=0\)

\(\to\left(c-1\right)\left(b-1\right)\left(a-1\right)=0\). Vậy ba số a,b,c có 1 số bằng 1.

 

Bài 2. Từ giả thiết ta suy ra\(x^3+2xy^2+\left(x^2+8y^2\right)y=0\to x^3+x^2y+2xy^2+8y^3=0\to\)

Nếu y=0 thì x=0, khi đó không thỏa mãn \(x^2+8y^2=12\) (loại).

Với y khác 0, chia cả hai vế cho \(y^3,\) ta được

\(t^3+t^2+2t+8=0\to\left(t+2\right)\left(t^2-t+4\right)=0\to t=-2\to x=-2y\)

Thế vào phương trình thứ hai ta được \(12y^2=12\to y=\pm1\to x=\mp2.\)

Vậy ta có hai cặp nghiệm \(\left(x,y\right)=\left(2,-1\right);\left(-2;1\right).\)

 

7 tháng 10 2015

Bài 1. Từ giả thiết, với chú ý abc=1, ta suy ra $\left(a+b\right)+c=\frac{a+b}{ab}+\frac{1}{c}=c\left(a+b\right)+\frac{1}{c}\to\left(a+b\right)\left(c-1\right)=\frac{c^2-1}{c}\to\left(c-1\right)\left(a+b-\frac{c+1}{c}\right)=0$(a+b)+c=a+bab +1c =c(a+b)+1c →(a+b)(c−1)=c2−1c →(c−1)(a+b−c+1c )=0

$\to\frac{\left(c-1\right)\left(ac+bc-c-1\right)}{c}=0\to\left(c-1\right)\left(\frac{1}{b}-1+c\left(b-1\right)\right)=0\to\left(c-1\right)\left(b-1\right)\left(c-\frac{1}{b}\right)=0$→(c−1)(ac+bc−c−1)c =0→(c−1)(1b −1+c(b−1))=0→(c−1)(b−1)(c−1b )=0

$\to\left(c-1\right)\left(b-1\right)\left(a-1\right)=0$→(c−1)(b−1)(a−1)=0. Vậy ba số a,b,c có 1 số bằng 1.

 

Bài 2. Từ giả thiết ta suy ra$x^3+2xy^2+\left(x^2+8y^2\right)y=0\to x^3+x^2y+2xy^2+8y^3=0\to$x3+2xy2+(x2+8y2)y=0→x3+x2y+2xy2+8y3=0→

Nếu y=0 thì x=0, khi đó không thỏa mãn $x^2+8y^2=12$x2+8y2=12 (loại).

Với y khác 0, chia cả hai vế cho $y^3,$y3, ta được

$t^3+t^2+2t+8=0\to\left(t+2\right)\left(t^2-t+4\right)=0\to t=-2\to x=-2y$t3+t2+2t+8=0→(t+2)(t2−t+4)=0→t=−2→x=−2y

Thế vào phương trình thứ hai ta được $12y^2=12\to y=\pm1\to x=\mp2.$12y2=12→y=±1→x=∓2.

Vậy ta có hai cặp nghiệm $\left(x,y\right)=\left(2,-1\right);\left(-2;1\right).$(x,y)=(2,−1);(−2;1).