Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2018}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\left(a+b+c=2018\right)\)
\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left[\dfrac{1}{ab}+\dfrac{1}{c\left(a+b+c\right)}\right]\left(a+b\right)=0\)
\(\Leftrightarrow\dfrac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}\times\left(a+b\right)=0\)
\(\Leftrightarrow\dfrac{\left(a+c\right)\left(b+c\right)\left(a+b\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\b=-c\\a=-b\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=2018\\a=2018\\c=2018\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{1}{2018^{2017}}\)
hình như bạn bị sai rồi
a=-c
a=-b
b=-c
=>a=-b=-(-c)=c
mà a=-c =>vô lý
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\Rightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\Rightarrow\left(a+b\right)\left(ab+ac+bc\right)+abc+ac^2+bc^2-abc=0\Rightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\Rightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\Rightarrow\left[{}\begin{matrix}a+b=0\\a+c=0\\b+c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=-b\\c=-a\\b=-c\end{matrix}\right.\)TH1: nếu a=-b
P=(a2017+b2017)(b2018-c2018)=(-b2017+b2017)(b2018-c2018)=0
TH2: nếu b=-c
P=(a2017+b2017)(b2018-c2018)=(a2017+b2017)((-c)2018-c2018)=0
Còn một TH nữa thì bạn ghi thiếu đề rồi
Từ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)
\(\Leftrightarrow a^2b+abc+a^2c+b^2a+b^2c+abc+bc^2+ac^2=0\)
\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left[a\left(b+c\right)+c\left(b+c\right)\right]\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)
Thay vào từng TH suy ra M=0
12. Ta có \(ab\le\frac{a^2+b^2}{2}\)
=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)
Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)
=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)
=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)
Khi đó
\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)
Dấu bằng xảy ra khi a=b=c=1
Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1
13. Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)
=> \(1\ge\frac{9}{a+b+c+3}\)
=> \(a+b+c\ge6\)
Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)
Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)
Cộng 3 BT trên ta có
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)
Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)
=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)
Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)
<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)
<=> \(a^2+b^2\ge2ab\)(luôn đúng )
=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)
=> \(P\ge2\)
Vậy \(MinP=2\)khi a=b=c=2
Lưu ý : Chỗ .... là tương tự
\(\left(\dfrac{x-4}{2x-4}+\dfrac{2}{x^2-2x}\right):\dfrac{x-2}{x+1}\)
\(=\left(\dfrac{x-4}{2\left(x-2\right)}+\dfrac{2}{x\left(x-2\right)}\right).\dfrac{x+1}{x-2}\)
\(=\dfrac{x\left(x-4\right)+4}{2x\left(x-2\right)}.\dfrac{x+1}{x-2}\)
\(=\dfrac{x^2-4x+4}{2x\left(x-2\right)}.\dfrac{x+1}{x-2}\)
\(=\dfrac{\left(x-2\right)^2\left(x+1\right)}{2x\left(x-2\right)\left(x-2\right)}\)
\(=\dfrac{x+1}{2x}\)
Mình làm nốt bài 2 nhé :
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)
⇔ \(\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c\)
⇔ \(\dfrac{a^2+a\left(b+c\right)}{b+c}+\dfrac{b^2+b\left(c+a\right)}{c+a}+\dfrac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)
⇔ \(\dfrac{a^2}{b+c}+a+\dfrac{b^2}{c+a}+b+\dfrac{c^2}{a+b}+c=a+b+c\)
⇔ \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
+ \(2a+b+c=\left(a+b\right)+\left(a+c\right)\)
\(\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\) ( theo AM-GM )
\(\Rightarrow\left(2a+b+c\right)^2\ge4\left(a+b\right)\left(a+c\right)\)
\(\Rightarrow\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)
Dấu "=" xảy ra \(\Leftrightarrow b=c\)
+ Tương tự : \(\frac{1}{\left(2b+c+a\right)^2}\le\frac{1}{4\left(a+b\right)\left(b+c\right)}\). Dấu "=" xảy ra <=> a = c
\(\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(b+c\right)}\). Dấu "=" xảy ra \(\Leftrightarrow a=b\)
Do đó : \(P\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\)
\(\Rightarrow P\le\frac{1}{2}\cdot\frac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}\)\(=8abc\)
\(\Rightarrow P\le\frac{a+b+c}{16abc}\)
+ \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\). Dấu :=" xảy ra \(\Leftrightarrow a=b\)
\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\). Dấu "=" xảy ra <=> b = c
\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\). Dấu "=" xảy ra <=> c = a
\(\Rightarrow2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Rightarrow3\ge\frac{a+b+c}{abc}\) \(\Rightarrow a+b+c\le3abc\)
\(\Rightarrow P\le\frac{3abc}{16abc}=\frac{3}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a}{b^2+1}=a-\dfrac{ab^2}{b^2+1}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{ab}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b}{1+c^2}\ge b-\dfrac{bc}{2};\dfrac{c}{1+a^2}\ge c-\dfrac{ac}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\ge3-\dfrac{\dfrac{\left(a+b+c\right)^2}{3}}{2}=\dfrac{3}{2}>\dfrac{2018}{2003}\)
Vì a + b + c = 2018
\(\Rightarrow\left\{{}\begin{matrix}b+c=2018-a\\c+a=2018-b\\a+b=2018-c\end{matrix}\right.\)
Ta có: \(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a}{2018-a}+\dfrac{b}{2018-b}+\dfrac{c}{2018-c}\)
\(P+3=\left(\dfrac{a}{2018-a}+1\right)+\left(\dfrac{b}{2018-b}+1\right)+\left(\dfrac{c}{2018-c}+1\right)=\dfrac{2018}{b+c}+\dfrac{2018}{c+a}+\dfrac{2018}{a+b}=2018\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+c}\right)=2018.\dfrac{2017}{2018}=2017\Rightarrow P=2014\)
Ta có : \(P=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{b+a}\)
\(\Rightarrow3+P=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{a+c}+1\right)+\left(\dfrac{c}{a+b}+1\right)\)
\(\Rightarrow3+P=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a +b+c}{a+b}\)
\(\Rightarrow3+P=\left(a+b+c\right).\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\)
Mà \(a+b+c=2018;\) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{2017}{2018}\) \(\left(a,b\in R\right)\)
\(\Rightarrow3+P=2018.\dfrac{2017}{2018}\)
\(\Rightarrow3+P=2017\)
\(\Rightarrow P=2014\)
Vậy \(P=2014\)