\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

Vì a + b + c = 2018

\(\Rightarrow\left\{{}\begin{matrix}b+c=2018-a\\c+a=2018-b\\a+b=2018-c\end{matrix}\right.\)

Ta có: \(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a}{2018-a}+\dfrac{b}{2018-b}+\dfrac{c}{2018-c}\)

\(P+3=\left(\dfrac{a}{2018-a}+1\right)+\left(\dfrac{b}{2018-b}+1\right)+\left(\dfrac{c}{2018-c}+1\right)=\dfrac{2018}{b+c}+\dfrac{2018}{c+a}+\dfrac{2018}{a+b}=2018\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+c}\right)=2018.\dfrac{2017}{2018}=2017\Rightarrow P=2014\)

6 tháng 10 2018

Ta có : \(P=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{b+a}\)

\(\Rightarrow3+P=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{a+c}+1\right)+\left(\dfrac{c}{a+b}+1\right)\)

\(\Rightarrow3+P=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a +b+c}{a+b}\)

\(\Rightarrow3+P=\left(a+b+c\right).\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\)

\(a+b+c=2018;\) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{2017}{2018}\) \(\left(a,b\in R\right)\)

\(\Rightarrow3+P=2018.\dfrac{2017}{2018}\)

\(\Rightarrow3+P=2017\)

\(\Rightarrow P=2014\)

Vậy \(P=2014\)

25 tháng 9 2017

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2018}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\left(a+b+c=2018\right)\)

\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left[\dfrac{1}{ab}+\dfrac{1}{c\left(a+b+c\right)}\right]\left(a+b\right)=0\)

\(\Leftrightarrow\dfrac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}\times\left(a+b\right)=0\)

\(\Leftrightarrow\dfrac{\left(a+c\right)\left(b+c\right)\left(a+b\right)}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\b=-c\\a=-b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=2018\\a=2018\\c=2018\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{1}{2018^{2017}}\)

14 tháng 4 2018

hình như bạn bị sai rồi

a=-c

a=-b

b=-c

=>a=-b=-(-c)=c

mà a=-c =>vô lý

29 tháng 8 2018

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\Rightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\Rightarrow\left(a+b\right)\left(ab+ac+bc\right)+abc+ac^2+bc^2-abc=0\Rightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\Rightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\Rightarrow\left[{}\begin{matrix}a+b=0\\a+c=0\\b+c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=-b\\c=-a\\b=-c\end{matrix}\right.\)TH1: nếu a=-b

P=(a2017+b2017)(b2018-c2018)=(-b2017+b2017)(b2018-c2018)=0

TH2: nếu b=-c

P=(a2017+b2017)(b2018-c2018)=(a2017+b2017)((-c)2018-c2018)=0

Còn một TH nữa thì bạn ghi thiếu đề rồi

14 tháng 12 2018

Từ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow a^2b+abc+a^2c+b^2a+b^2c+abc+bc^2+ac^2=0\)

\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left[a\left(b+c\right)+c\left(b+c\right)\right]\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)

Thay vào từng TH suy ra M=0

17 tháng 6 2019

12. Ta có \(ab\le\frac{a^2+b^2}{2}\)

=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó 

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu bằng xảy ra khi a=b=c=1

Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1

17 tháng 6 2019

13.  Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)

=> \(1\ge\frac{9}{a+b+c+3}\)

=> \(a+b+c\ge6\)

Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)

Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)

Cộng 3 BT trên ta có

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)

Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)

=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)

Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)

<=> \(a^2+b^2\ge2ab\)(luôn đúng )

=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)

=> \(P\ge2\)

Vậy \(MinP=2\)khi a=b=c=2

Lưu ý : Chỗ .... là tương tự 

24 tháng 6 2018

\(\left(\dfrac{x-4}{2x-4}+\dfrac{2}{x^2-2x}\right):\dfrac{x-2}{x+1}\)

\(=\left(\dfrac{x-4}{2\left(x-2\right)}+\dfrac{2}{x\left(x-2\right)}\right).\dfrac{x+1}{x-2}\)

\(=\dfrac{x\left(x-4\right)+4}{2x\left(x-2\right)}.\dfrac{x+1}{x-2}\)

\(=\dfrac{x^2-4x+4}{2x\left(x-2\right)}.\dfrac{x+1}{x-2}\)

\(=\dfrac{\left(x-2\right)^2\left(x+1\right)}{2x\left(x-2\right)\left(x-2\right)}\)

\(=\dfrac{x+1}{2x}\)

25 tháng 6 2018

Mình làm nốt bài 2 nhé :

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)

\(\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c\)

\(\dfrac{a^2+a\left(b+c\right)}{b+c}+\dfrac{b^2+b\left(c+a\right)}{c+a}+\dfrac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(\dfrac{a^2}{b+c}+a+\dfrac{b^2}{c+a}+b+\dfrac{c^2}{a+b}+c=a+b+c\)

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)


Y
23 tháng 5 2019

+ \(2a+b+c=\left(a+b\right)+\left(a+c\right)\)

\(\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\) ( theo AM-GM )

\(\Rightarrow\left(2a+b+c\right)^2\ge4\left(a+b\right)\left(a+c\right)\)

\(\Rightarrow\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)

Dấu "=" xảy ra \(\Leftrightarrow b=c\)

+ Tương tự : \(\frac{1}{\left(2b+c+a\right)^2}\le\frac{1}{4\left(a+b\right)\left(b+c\right)}\). Dấu "=" xảy ra <=> a = c

\(\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(b+c\right)}\). Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Do đó : \(P\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\)

\(\Rightarrow P\le\frac{1}{2}\cdot\frac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}\)\(=8abc\)

\(\Rightarrow P\le\frac{a+b+c}{16abc}\)

+ \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\). Dấu :=" xảy ra \(\Leftrightarrow a=b\)

\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\). Dấu "=" xảy ra <=> b = c

\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\). Dấu "=" xảy ra <=> c = a

\(\Rightarrow2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\Rightarrow3\ge\frac{a+b+c}{abc}\) \(\Rightarrow a+b+c\le3abc\)

\(\Rightarrow P\le\frac{3abc}{16abc}=\frac{3}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

6 tháng 1 2018

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a}{b^2+1}=a-\dfrac{ab^2}{b^2+1}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{ab}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b}{1+c^2}\ge b-\dfrac{bc}{2};\dfrac{c}{1+a^2}\ge c-\dfrac{ac}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\ge3-\dfrac{\dfrac{\left(a+b+c\right)^2}{3}}{2}=\dfrac{3}{2}>\dfrac{2018}{2003}\)