\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Mk cx đang định hỏi câu này

28 tháng 8 2019

\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

8 tháng 5 2019

Em có cách này nhưng không biết đúng không.Anh check lại ạ,em mới lớp 7 thôi!

Bổ sung đk a,b,c >= 0 (hay a,b,c không âm)

Áp dụng BĐT Cô si (AM-GM),ta có:

\(a^2+\frac{1}{4}\ge2\sqrt{\frac{a^2.1}{4}}=a\) 

Tương tự: \(b^2+\frac{1}{4}\ge b;c^2+\frac{1}{4}\ge c\)

Cộng theo vế 3 BĐT trên suy ra \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c=\frac{3}{2}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

8 tháng 5 2019

Hoặc là dùng BĐT Bunhiacopxki chắc cũng được ạ!

Ta có: \(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\)

Suy ra \(a^2+b^2+c^2\ge\frac{\left(\frac{9}{4}\right)}{3}=\frac{9}{12}=\frac{3}{4}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

NV
21 tháng 5 2020

\(\frac{bc}{a^2+1}=\frac{bc}{a^2+b^2+a^2+c^2}\le\frac{1}{2}\sqrt{\frac{b^2c^2}{\left(a^2+b^2\right)\left(a^2+c^2\right)}}\le\frac{1}{4}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)\)

Tương tự:

\(\frac{ac}{b^2+1}\le\frac{1}{4}\left(\frac{a^2}{a^2+b^2}+\frac{c^2}{b^2+c^2}\right)\) ; \(\frac{ab}{c^2+1}\le\frac{1}{4}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{4}\left(\frac{a^2}{a^2+b^2}+\frac{b^2}{a^2+b^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{a^2+c^2}+\frac{c^2}{a^2+c^2}\right)=\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

21 tháng 3 2019

Ý 3 bạn bỏ dòng áp dụng....ta có nhé

\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )

Dấu " = " xảy ra <=> a=b=c=d=0

6) Sai đề

Sửa thành:\(x^2-4x+5>0\)

\(\Leftrightarrow\left(x-2\right)^2+1>0\)

7) Áp dụng BĐT AM-GM ta có:

\(a+b\ge2.\sqrt{ab}\)

Dấu " = " xảy ra <=> a=b

\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)

Chứng minh tương tự ta có:

\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)

\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)

Dấu " = " xảy ra <=> a=b=c

Cộng vế với vế của các BĐT trên ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)

Dấu " = " xảy ra <=> a=b=c

21 tháng 3 2019

1)\(x^3+y^3\ge x^2y+xy^2\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)

Dấu " = " xảy ra <=> x=y

2) \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> x=y

3) Áp dụng BĐT AM-GM ta có:

\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)

\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)

\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)

Cộng vế với vế của các bất đẳng thức trên ta được:

\(a^2+b^2+1\ge ab+a+b\)

Dấu " = " xảy ra <=> a=b=1

4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)

Dấu " = " xảy ra <=> a=b=c=1/2