\(T=3|...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2021

bạn ơi. Bạn có đáp án của bài này chưa vậy. Cho mik xin vs

mik đang cần gấp

 

1 tháng 3 2016

giúp với mình sắp nạp rồi

24 tháng 1 2019

Áp dụng bđt \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) được

\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

Dấu "=" khi ay = bx

24 tháng 2 2020

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2019}{y}=\frac{x+y-2020}{z}=\frac{y+z+1+x+z+2019+x+y-2020}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow2=\frac{1}{x+y+z}\)\(\Rightarrow x+y+z=\frac{1}{2}\)

Ta có: 

​+) \(\frac{y+z+1}{x}=2\)\(\Rightarrow y+z+1=2x\)\(\Rightarrow x+y+z+1=3x\)\(\Rightarrow\frac{1}{2}+1=3x\)\(\Rightarrow3x=\frac{3}{2}\)\(\Rightarrow x=\frac{1}{2}\)

+) \(\frac{x+z+2019}{y}=2\)\(\Rightarrow x+z+2019=2y\)\(\Rightarrow x+y+z+2019=3y\)\(\Rightarrow\frac{1}{2}+2019=3y\)\(\Rightarrow3y=\frac{4039}{2}\)\(\Rightarrow y=\frac{4039}{6}\)

+) \(\frac{x+y-2020}{z}=2\)\(\Rightarrow x+y-2020=2z\)\(\Rightarrow x+y+z-2020=3z\)\(\Rightarrow\frac{1}{2}-2020=3z\)\(\Rightarrow3z=\frac{-4039}{2}\)\(\Rightarrow z=\frac{-4039}{6}\)

Lại có: \(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{4039}{6}\right)^{2017}+\left(\frac{-4039}{6}\right)^{2017}=4032+\left(\frac{4039}{6}\right)^{2017}-\left(\frac{4039}{6}\right)^{2017}=4032\)

23 tháng 4 2019

Ta có (x-45)^2 >=0 

          -|2y+5|<=0 

mà (x-45)^2=-|2y+5

=> x-45= 2y+5=0

=> x=45 ; y=-5/2

Thay vào là ra

ta có \(\left(x-45\right)^2\ge0\)\(-\left|2y+5\right|\le0\)nên để dấu = xảy ra khi và chỉ khi 2 vế bằng 0

=> \(\left(x-45\right)^2=-\left|2y+5\right|=0\)

\(\Rightarrow\hept{\begin{cases}x=45\\y=\frac{-5}{2}\end{cases}}\)

Thay vào rồi tính nha men

12 tháng 3 2023

Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z

=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)

=�+��+1��+�+1=xy+x+1x+xy+1

=1=1

19 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)

Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3x+2\)\(1\)\(-1\)\(5\)\(-5\)
\(x\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)

Vậy \(x\in\left\{-1;1\right\}\)

Chúc bạn học tốt ~ 

19 tháng 4 2018

\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau : 

\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)

Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)

Áp dụng vào ta có : 

\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)

Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại ) 

Vậy GTNN của \(A=8\) khi \(0\le x\le8\)

Chúc bạn học tốt ~