Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hiệu a2+b2+c2+d2 -(a+b+c+d)
=a(a-10+b(b-1)+c(c-1)+d(d-1) \(⋮\)2
mà a2+b2+c2+d2 \(\ge\)0
=> a+b+c+d \(⋮\)2
hay a+b+c+d là hợp số
Tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-abcd-la-cac-so-tu-nhien-thoa-man-doi-1-khac-nhau-va-a2d2b2c2tchung-minh-abcd-va-acbd-khong-the-dong-thoi-la-so-nguyen-to.1540844491932
1/ Chứng minh nó chia hết cho 3:
Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.
\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.
\(\Rightarrow xy⋮3\)
Chứng minh chia hết cho 4.
Nếu cả x, y đều chẵn thì \(xy⋮4\)
Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ
\(\Rightarrow x=2k+1;y=2m;z=2n+1\)
\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)
\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)
\(\Rightarrow m⋮2\)
\(\Rightarrow y⋮4\)
\(\Rightarrow xy⋮4\)
Với x, y đều lẻ nên z chẵn
\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)
\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này
Vậy \(xy⋮4\)
Từ chứng minh trên
\(\Rightarrow xy⋮12\)
2/ \(a+b=c+d\)
\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)
\(\Leftrightarrow2ab=2cd\)
\(\Leftrightarrow-2ab=-2cd\)
\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)
Kết hợp với \(a+b=c+d\)
\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)
\(\RightarrowĐPCM\)
Áp dụng BĐT Cauchy ta có: \(\frac{1}{a^2+1}=\frac{\left(a^2+1\right)-a^2}{a^2+1}=1-\frac{a^2}{a^2+1}\ge1-\frac{a^2}{2a}=1-\frac{a}{2}\)
Hoàn toàn tương tự ta được
\(\frac{1}{b^2+1}\ge1-\frac{b}{2};\frac{1}{c^2+1}\ge1-\frac{c}{2};\frac{1}{d^2+1}\ge1-\frac{d}{2}\)
Cộng theo vế của từng BĐT trên ta được
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1\ge2}\)
Dấu "=" xảy ra khi a=b=c=d=1
Nguồn: Nguyễn Thị Thúy
\(1.\) \(\left(a+2\right)\left(a+3\right)\left(a^2+a+6\right)+4a^2=\left(a^2+5a+6\right)\left(a^2+a+6\right)+4a^2\)
Đặt \(t=a^2+3a+6\) , ta được:
\(\left(t+2a\right)\left(t-2a\right)+4a^2=t^2-4a^2+4a^2=t^2=\left(a^2+3a+6\right)^2\)
a) \(a^2+b^2+c^2+d^2=ab+bc+ac+cd.\)
<=>\(2a^2+2b^2+2c^2+2d^2=2ab+2ac+2bc+2cd\)
<=>\(2a^2+2b^2+2c^2+2d^2-2ab-2bc-2ac-2cd=0\)
<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)+\left(d^2-2cd+c^2\right)\)=0
<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(d-c\right)^2=0\)
=>a=b=c=d
=> ABCD là hình thoi
2.tự vẽ hình
a)Gọi O là giao điểm của hai đường chéo=>OD=OB(t/c)
Xét tgv OFD và tgv OEB có:
\(\widehat{FOD}=\widehat{EOB}\left(\text{đ}\text{ối}\text{đ}\text{ỉnh}\right)\)
\(DO=BO\left(cmt\right)\)
=> tgv OFD = tgv OEB (cgv-gn)
=> DF=BE
Mà DF//BE ( cùng vg với AC)
=> tg DEBF là hbn ( có cặp cạnh đối // và bằng nhau)
b) Ta có : \(\widehat{ADC}=\widehat{ABC}\)(hai góc so le trong)
\(\Rightarrow\widehat{CDK}=\widehat{CBH}\)
Xét tg CKD và tg CHB có :
\(\widehat{CDK}=\widehat{CBH}\)
\(\widehat{DKC}=\widehat{BHC}\left(=90\text{đ}\text{ộ}\right)\)
=> tg CKD = tg CHB (g.g)
\(\Rightarrow\frac{CK}{CD}=\frac{CH}{CB}\Rightarrow CD\cdot CH=CK\cdot CB\)
c) Xét tg ABE và tg AHC có :
\(\widehat{AEB}=\widehat{AHC}\)
\(\widehat{A}:chung\)
=> tg ABE đồng dạng tg AHC (g.g)
\(\Rightarrow\frac{AB}{AC}=\frac{AE}{AH}\Rightarrow AB\cdot AH=AC\cdot AE\)(1)
Xét tg ADF và tg ACK có :
\(\widehat{A}:chung\)
\(\widehat{\text{AF}D}=\widehat{AKC}\)
=> tg ADF đồng dạng tg ACK
\(\Rightarrow\frac{AD}{AC}=\frac{\text{AF}}{AK}\Rightarrow AD\cdot AK=AC\cdot\text{AF}\)(2)
Xét tgv AFD và tgv CEB có :
AD=BC(gt)
DF=BE(cmt)
=> tg AFD=tg CEB (ch-cgv)
=> AF=CE (3)
Từ (1); (2); (3) ta có :
\(AB\cdot AH+AD\cdot AK=AC\left(AE+\text{AF}\right)=AC\left(AE\cdot CE\right)=AC^2\)