K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5

Giả sử a = 2024b - 2023c + 2021d. Xét biểu thức S = a³ + b³ + c³ + d³.
Vì a phụ thuộc tuyến tính vào b, c, d nên có thể đưa S về một dạng có thể chia hết cho một số khác 1 và chính nó. Thử nghiệm với các giá trị nhỏ hoặc dùng modulo để xét.
Ví dụ: đặt b = c = d = 1 → a = 2024 - 2023 + 2021 = 2022
S = 2022³ + 1³ + 1³ + 1³ = hợp số (vì lớn và không phải số nguyên tố).
Do đó, tổng luôn là hợp số với mọi a, b, c, d nguyên dương thỏa mãn đề bài.

29 tháng 3 2019

Xét \(A=a^{2}+b^{2}+c^{2}+d^{2}+e^{2}-a-b-c-d-e=a\left ( a-1 \right )+b\left ( b-1 \right )+c\left ( c-1 \right )+d\left ( d-1 \right )+e\left ( e-1 \right )\)

Mà a , a-1 là 2 số nguyên liên tiếp

\(\Rightarrow a\left ( a-1 \right )\vdots 2\) 

Theo chứng minh trên 

\(\Rightarrow b\left ( b-1 \right ),c\left ( c-1 \right ), d\left ( d-1 \right ), e\left ( e-1 \right )\vdots 2\)

\(\Rightarrow A\vdots 2\) mà \(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}\vdots 2\)

\(\Rightarrow a+b+c+d+e\vdots 2\)

MÀ a,b,c,d,e nguyên dương nên \(a+b+c+d+e > 2\)

\(\Rightarrow a+b+c+d+e\) là hợp số.

 

b^2 = ac => a/b = b/c

c^2 = bd

=> b/c = c/d

=> a/b = b/c = c/d

=> a^3 /b^3 = b^3 /c^3 = c^3 /d^3 = ﴾a^3 + b^3 + c^3 ﴿ / ﴾b63 + c^3 + d^3 ﴿ ﴾Theo t/c của dãy tỉ số bằng nhau﴿

Mà a^3 /b^3 = a/b .a/b .a/b = a/b. b/c . c/d = a/d

Nên ﴾a^3 + b^3 + c^3 ﴿ / ﴾b^3 + c^3 + d^3 ﴿ = a/d

=>dpcm

8 tháng 6 2015

b^2=ac => a/b=b/c (1)

c^2=bd => b/c=c/d (2)

từ (1) và (2) => a/b=b/c=c/d=a.b.c/b.c.d=a/d (3)

a/b=b/c=c/d=>a^3/b^3=b^3/c^3=c^3/d^3=(a^3+b^3+c^3)/(b^3+c^3+d^3) (4)

Từ 3 và 4 => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

 

16 tháng 12 2015

cho mình hỏi: Tại sao ta lại có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a\cdot b\cdot c}{b\cdot c\cdot d}=\frac{a}{d}\)

1 tháng 11 2018

Câu hỏi của Lê Thị Trà MI - Toán lớp 7 - Học toán với OnlineMath Bạn xem bài làm tương tự ở link này nhé!

20 tháng 8 2019

\(a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=\frac{2013}{1990}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{23}{1990}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{\frac{1990}{23}}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{12}{23}}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{\frac{23}{12}}}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{11}{12}}}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{1}{\frac{12}{11}}}}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{1}{1+\frac{1}{11}}}}\)

Vậy a = 1; b = 86; c = 1; d = 1; e = 11

Vậy a + b + c + d + e = 1 + 86 + 1 + 1 + 11 = 100