Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{a+c+d}< \frac{b+c}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{c+d}{a+b+c+d}\)
Cộng vế theo vế ta được :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) ( đpcm )
2. Áp dụng bất đẳng thức Cô - si cho 2 số ko âm b-1 và 1 ta có :
\(\sqrt{\left(b-1\right)\cdot1}\le\frac{\left(b-1\right)+1}{2}=\frac{b}{2}\)
Dấu "=" xảy ra <=> b - 1 = 1 <=> b = 2
\(\Rightarrow a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b}{2}=\frac{ab}{2}\)
Tương tự ta có : \(b\sqrt{a-1}\le\frac{ab}{2}\) Dấu "=" xảy ra <=> a = 2
Do đó : \(a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)
Dấu "=" xảy ra <=> a = b = 2
Câu 1: Đặt \(S=\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}=\frac{x}{\sqrt{\left(1-x\right)\left(x+1\right)}}+\frac{y}{\sqrt{\left(1-y\right)\left(y+1\right)}}\)
\(\frac{S}{\sqrt{3}}=\frac{x}{\sqrt{\left(3-3x\right)\left(x+1\right)}}+\frac{y}{\sqrt{\left(3-3y\right)\left(y+1\right)}}\)
Áp dụng BĐT AM-GM: \(\sqrt{\left(3-3x\right)\left(x+1\right)}\le\frac{3-3x+x+1}{2}=\frac{4-2x}{2}=2-x\)
\(\Rightarrow\frac{x}{\sqrt{\left(3-3x\right)\left(x+1\right)}}\ge\frac{x}{2-x}\)
Tương tự: \(\frac{y}{\sqrt{\left(3-3y\right)\left(y+1\right)}}\ge\frac{y}{2-y}\)
Từ đó: \(\frac{S}{\sqrt{3}}\ge\frac{x}{2-x}+\frac{y}{2-y}=\frac{x^2}{2x-x^2}+\frac{y^2}{2y-y^2}\)
Áp dụng BĐT Schwarz: \(\frac{S}{\sqrt{3}}\ge\frac{x^2}{2x-x^2}+\frac{y^2}{2y-y^2}\ge\frac{\left(x+y\right)^2}{2\left(x+y\right)-\left(x^2+y^2\right)}=\frac{1}{2-\left(x^2+y^2\right)}\)
Áp dụng BĐT \(\frac{x^2+y^2}{2}\ge\frac{\left(x+y\right)^2}{4}\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{S}{\sqrt{3}}\ge\frac{1}{2-\frac{1}{2}}=\frac{2}{3}\Leftrightarrow S\ge\frac{2\sqrt{3}}{3}=\frac{2}{\sqrt{3}}\)(ĐPCM).
Dấu bằng có <=> \(x=y=\frac{1}{2}\).
Câu 4: Sửa đề CMR: \(abcd\le\frac{1}{81}\)
Ta có: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}=3\)
\(\Leftrightarrow\frac{1}{1+a}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)
\(\Leftrightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)(AM-GM)
Tương tự:
\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)\(;\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)
\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Nhân 4 BĐT trên theo vế thì có:
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge81\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)\right]^3}}\)
\(=81.\frac{abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\)
\(\Rightarrow81.abcd\le1\Leftrightarrow abcd\le\frac{1}{81}\)(ĐPCM)
Dấu "=" có <=> \(a=b=c=d=\frac{1}{3}\).
Ta có :
\(\sqrt{a +b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
<=> \(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le6\)
<=> \(2\left(a+b+c\right)+2\sqrt{a+b}\sqrt{b+c}+2\sqrt{c+a}\sqrt{b+c}+2\sqrt{b+c}\sqrt{c+a}\le6\)
<=> \(\sqrt{a+b}\sqrt{b+c}+\sqrt{c+a}\sqrt{b+c}+\sqrt{b+c}\sqrt{c+a}\le2\) (a)
Đặt \(\hept{\begin{cases}x=a+b\\y=b+c\\z=c+a\end{cases}}\Rightarrow x+y+z=2\left(a+b+c\right)=2\)
Suy ra
(a) <=> \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le2\)
Ta có bất đẳng thức phụ sau : Với x,y,z là các số dương thì
\(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\) (*)
Chứng minh : Nhân 2 cho 2 vế
(*) <=> \(2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\le2x+2y+2z\)
<=> \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Vậy \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)
Suy ra \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z=2\)
Vậy Với a + b + c = 1 thì \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Đẳng thức xảy ra <=> x = b = c = \(\frac{1}{3}\)
Please help me!