K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 11 2022

Lời giải:
Vì $a,b,c$ đều nguyên nên:
$-a+b\in\mathbb{Z}$

$b+c-a\in\mathbb{Z}$

$c-a\in\mathbb{Z}$

Suy ra $M$ là tổng và hiệu của các số nguyên nên hiển nhiên $M$ nguyên.

10 tháng 8 2017

a, (5n+2)9 = (2n+7)7

  45n+18=14n+49

  31n=31

  n=1

28 tháng 3 2018

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)

\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)

\(\Leftrightarrow45n+18=14n+49\)

\(\Leftrightarrow31n=31\)

\(\Leftrightarrow n=1\)

n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)

Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.

\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)

Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

Ta có bảng:

2n + 71-131-31
n-3-412-19
KLTMTMTMTM

 

Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)

c

10 tháng 1 2018

p+q+r=bc+a+ab+c+ca+b=2(a+b+c)2

=> p+q+r chẵn

+) nếu p+q+r chẵn thì ít nhất 2 trong 3 số đó bằng nhau

+) nếu có một số bằng 2 thì gỉa sử p=2

<=> p= bc+a=1+1

Mà a,b,c nguyên dương => 2=1+1 = bc+a= ab+c 

=> p=q (đpcm)

17 tháng 11 2016

Mk chả hiểu gì cả

3 tháng 2 2020

a) TH1: Nếu \(b< 0\)\(\Rightarrow a+b< a\)

TH2: Nếu \(b\ge0\)\(\Rightarrow a+b\ge a\)

b) TH1: \(a=b\)\(\Rightarrow a-b=b-a=0\)\(\Rightarrow\left(a-b\right)\left(b-a\right)=0\)

TH2: \(a\ne b\)\(\Rightarrow a-b\)và \(b-a\)đối nhau \(\Rightarrow\left(a-b\right)\left(b-a\right)< 0\)

\(\Rightarrow\left(a-b\right)\left(b-a\right)\le0\)( đpcm )

Đề có vẻ sai nhé bạn!!!

Thiếu dấu!!

hok tốt!!!

^^

9 tháng 5 2017

\(M=-a+b-b-c+a+c-a\)

      \(=-a\)

Vì a là 1 số nguyên âm nên \(-a>0\)hay biểu thức M luôn luôn dương

     

5 tháng 3 2018

Ta có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)

\(\Rightarrow M>1\) (1)

Ta có:

\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)

\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow M< 2\) (2)

Từ (1) và (2) => 1 < M < 2

=> M không phải là một số nguyên dương (đpcm)

5 tháng 3 2018

CM :        1 < M < 2