Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
p+q+r=bc+a+ab+c+ca+b=2(a+b+c)2
=> p+q+r chẵn
+) nếu p+q+r chẵn thì ít nhất 2 trong 3 số đó bằng nhau
+) nếu có một số bằng 2 thì gỉa sử p=2
<=> p= bc+a=1+1
Mà a,b,c nguyên dương => 2=1+1 = bc+a= ab+c
=> p=q (đpcm)
a) TH1: Nếu \(b< 0\)\(\Rightarrow a+b< a\)
TH2: Nếu \(b\ge0\)\(\Rightarrow a+b\ge a\)
b) TH1: \(a=b\)\(\Rightarrow a-b=b-a=0\)\(\Rightarrow\left(a-b\right)\left(b-a\right)=0\)
TH2: \(a\ne b\)\(\Rightarrow a-b\)và \(b-a\)đối nhau \(\Rightarrow\left(a-b\right)\left(b-a\right)< 0\)
\(\Rightarrow\left(a-b\right)\left(b-a\right)\le0\)( đpcm )
\(M=-a+b-b-c+a+c-a\)
\(=-a\)
Vì a là 1 số nguyên âm nên \(-a>0\)hay biểu thức M luôn luôn dương
Ta có:
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow M>1\) (1)
Ta có:
\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)
\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow M< 2\) (2)
Từ (1) và (2) => 1 < M < 2
=> M không phải là một số nguyên dương (đpcm)
Lời giải:
Vì $a,b,c$ đều nguyên nên:
$-a+b\in\mathbb{Z}$
$b+c-a\in\mathbb{Z}$
$c-a\in\mathbb{Z}$
Suy ra $M$ là tổng và hiệu của các số nguyên nên hiển nhiên $M$ nguyên.