Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(2^{33}\equiv8\)(mod31)
\(\left(2^{33}\right)^{11}=2^{363}\equiv8\)(mod31)
\(\left(2^{363}\right)^5=2^{1815}\equiv1\)(mod31)
\(\left(2^{33}\right)^6\equiv2^{198}\equiv8\)(mod31)
=> \(2^{1815}.2^{198}:2^2=2^{2011}\equiv1.8:4\equiv2\)(mod31)
vậy số dư pháp chia trên là 2
1) Đặt \(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc\)
\(\Rightarrow A=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
\(\Rightarrow A\)có dạng \(4k-2abc\left(k\in Z\right)\)
Giả sử trong 3 số \(a,b,c\)có 1 số lẻ \(\Rightarrow\)Trong \(a,b,c\)có một số chẵn \(\left(a+b+c=4\right)\)
\(\Rightarrow2abc⋮4\)
Giả sử trong \(a,b,c\)có 1 số chẵn \(\Rightarrow2abc⋮4\)
\(\Rightarrow2abc=4m\)\(\Rightarrow A=4k-4m\). Mà \(4k-4m=4\left(k-m\right)⋮4\Rightarrow A⋮4\)
Vậy \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc⋮4\)(đpcm)
Câu hỏi của Lê Linh An - Toán lớp 6 - Học toán với OnlineMath
Xét : \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)
\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)
Ta có: \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)
\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)
Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)
Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\)
+) Ta có: 1 số chia 5 có số dư là: 0; 1; 2; 3; 4
=> 1 số chính phương chia 5 sẽ có số dư là: 0; 1; 4
=> Lũy thừa bậc 4 của 1 số tự nhiên chia 5 sẽ có số dư là: 0; 1
=> các số \(a^4;b^4;c^4\) chia cho 5 sẽ có bộ 3 số dư là: 0; 0; 0 hoặc 1;1;1 hoặc 1; 0; 0 hoặc 1; 1; 0
Nếu \(a^4;b^4;c^4\)chia cho 5 sẽ có bộ 3 số dư là: 1;1;1 hoặc 1; 1; 0
=> \(a^4+b^4+c^4\)chia cho 5 có số dư là 3 hoặc 2 vô lí vì \(a^4+b^4+c^4\) là một số chinh phương chia 5 dư 0; 1; 4
Do đó tồn tại 2 số trong 3 số chia cho 5 dư 0 hay chia hết cho 5
=> Giả sử đó là \(a^4⋮5\) và \(b^4⋮5\) => \(a,b⋮5\)=> \(abc⋮25\)(1)
+) Xét các trường hợp chẵn lẻ: nhận xét: Số chính phương chẵn chia 8 dư 0 hoặc 4; Số chính phương lẻ chia 8 dư 1
=> Lũy thừa bậc 4 của 1 số tự nhiên chẵn chia hết cho 8; Lũy thừa bậc 4 của 1 số tự nhiên lẻ chia 8 dư 1
Nếu a, b, c lẻ => \(a^4+b^4+c^4\)chia 8 dư 3 loại
Nếu 2 trong 3 số a, b, c lẻ => \(a^4+b^4+c^4\)chia 8 dư 2 loại
=> Tồn tại 2 trong 3 số a, b, c là số chẵn
=> \(abc⋮4\)(2)
từ (1); (2) và (4;25) = 1; 4.25=100
=> \(abc⋮100\)