Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức AM-GM ta có :
\(a^2+1\ge2\sqrt{a^2}=2\left|a\right|=2a\)
\(a^2b^2+4\ge2\sqrt{4a^2b^2}=2\left|2ab\right|=4ab\)
\(a^2b^2c^2+16\ge2\sqrt{16a^2b^2c^2}=2\left|4abc\right|=8abc\)
Nhân vế với vế các bđt trên ta có đpcm
Dấu "=" xảy ra <=> a = b = c
Vì \(a\ge0\)nên áp dụng bất đẳng thức Cô-si, ta được:
\(a^2+1\ge2a\left(1\right)\).
Chứng minh tương tự, ta được:
\(a^2b^2+4\ge4ab\left(a,b\ge0\right)\left(2\right)\).
Chứng minh tương tự, ta được:
\(a^2b^2c^2+16\ge8abc\left(a,b,c\ge0\right)\left(3\right)\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\)ta được:
\(\left(a^2+1\right)\left(a^2b^2+4\right)\left(a^2b^2c^2+16\right)\ge2a.4ab.8abc=64a^3b^2c\)(điều phải chứng minh).
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}a^2=1\\a^2b^2=4\\a^2b^2c^2=16\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\ab=2\\abc=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=2\end{cases}}\)
Và \(a,b,c\ge0\)
Vậy \(\left(a^2+1\right)\left(a^2b^2+4\right)\left(a^2b^2c^2+16\right)\ge64a^3b^2c\)với \(a,b,c\ge0\).
Ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right).\left(x,y>0\right)\) lien tiep la duoc
Chuc bn thanh cong
svác-xơ ngược dấu.
\(\frac{16}{2a+3b+3c}=\frac{16}{\left(a+b\right)+\left(c+b\right)+\left(b+c\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{2}{c+b}+\frac{1}{c+a}\)
Tương tự
\(\frac{16}{2b+3c+3a}\le\frac{1}{a+b}+\frac{1}{b+c}+\frac{2}{c+a}\)
\(\frac{16}{2c+3a+3b}\le\frac{2}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)
Cộng lại ta được:
\(16VT\le4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(đpcm\right)\)
1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)
\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)
Áp dụng BĐT Bunhiacốpxki dạng phân thức có
\(\dfrac{a^2}{a+2b^2}+\dfrac{b^2}{b+2c^2}+\dfrac{c^2}{c+2a^2}\ge\dfrac{\left(a+b+c\right)^2}{a+2b^2+b+2c^2+c+2a^2}=\dfrac{9}{3+2\left(a^2+b^2+c^2\right)}\) (1)
Áp dụng BĐT Bunhiacốpxki có:
\(\left(a.1+b.1+c.1\right)^2\ge\left(1+1+1\right)\left(a^2+b^2+c^2\right)\)
\(\Rightarrow9\ge3\left(a^2+b^2+c^2\right)\Rightarrow3\ge a^2+b^2+c^2\Rightarrow2\left(a^2+b^2+c^2\right)\le6\) (2)
Thay (2) vào (1) có \(\dfrac{a^2}{a+b^2}+\dfrac{b^2}{b+2c^2}+\dfrac{c^2}{c+a^2}\ge\dfrac{9}{3+6}=1\) (đpcm)
Dấu = xảy ra khi a= b=c=1
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow abc\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-2abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
CHÚC BẠN HỌC TỐT
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow a.b.c\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
Vậy \(E=0\)
\(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}=\frac{2}{a+2b+2c}\)
\(\Leftrightarrow\frac{2b+a}{ab}=\frac{2c-\left(a+2b+2c\right)}{c\left(a+2b+2c\right)}\)
\(\Leftrightarrow\frac{a+2b}{ab}=\frac{-\left(2b+a\right)}{ac+2ab+2c^2}\)
\(\Leftrightarrow\left(a+2b\right)\left(ac+2bc+2c^2\right)+\left(2b+a\right)ab=0\)
\(\Leftrightarrow\left(a+2b\right)\left(ac+2bc+2c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+2b\right)\left[a\left(b+c\right)+2c\left(b+c\right)\right]=0\)
\(\Rightarrow\left(a+2b\right)\left(b+c\right)\left(2c+a\right)=0\) (đpcm)
Ta có:
\(\left\{{}\begin{matrix}a^2+1\ge2a\\a^2b^2+4\ge4ab\\a^2b^2c^2+16\ge8abc\end{matrix}\right.\)
Nhân vế với vế:
\(\left(a^2+1\right)\left(a^2b^2+4\right)\left(a^2b^2c^2+16\right)\ge64a^3b^2c\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}a=1\\b=2\\c=2\end{matrix}\right.\)