\(a^2\)+1)(\(a^2b^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2021

Áp dụng bất đẳng thức AM-GM ta có :

\(a^2+1\ge2\sqrt{a^2}=2\left|a\right|=2a\)

\(a^2b^2+4\ge2\sqrt{4a^2b^2}=2\left|2ab\right|=4ab\)

\(a^2b^2c^2+16\ge2\sqrt{16a^2b^2c^2}=2\left|4abc\right|=8abc\)

Nhân vế với vế các bđt trên ta có đpcm

Dấu "=" xảy ra <=> a = b = c

5 tháng 5 2021

Vì \(a\ge0\)nên áp dụng bất đẳng thức Cô-si, ta được:

\(a^2+1\ge2a\left(1\right)\).

Chứng minh tương tự, ta được:

\(a^2b^2+4\ge4ab\left(a,b\ge0\right)\left(2\right)\).

Chứng minh tương tự, ta được:

\(a^2b^2c^2+16\ge8abc\left(a,b,c\ge0\right)\left(3\right)\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\)ta được:

\(\left(a^2+1\right)\left(a^2b^2+4\right)\left(a^2b^2c^2+16\right)\ge2a.4ab.8abc=64a^3b^2c\)(điều phải chứng minh).

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a^2=1\\a^2b^2=4\\a^2b^2c^2=16\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\ab=2\\abc=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=2\end{cases}}\)

Và \(a,b,c\ge0\)

Vậy \(\left(a^2+1\right)\left(a^2b^2+4\right)\left(a^2b^2c^2+16\right)\ge64a^3b^2c\)với \(a,b,c\ge0\).

26 tháng 11 2019

Ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right).\left(x,y>0\right)\)  lien tiep la duoc 

Chuc bn thanh cong

27 tháng 11 2019

svác-xơ ngược dấu.

\(\frac{16}{2a+3b+3c}=\frac{16}{\left(a+b\right)+\left(c+b\right)+\left(b+c\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{2}{c+b}+\frac{1}{c+a}\)

Tương tự 

\(\frac{16}{2b+3c+3a}\le\frac{1}{a+b}+\frac{1}{b+c}+\frac{2}{c+a}\)

\(\frac{16}{2c+3a+3b}\le\frac{2}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)

Cộng lại ta được:

\(16VT\le4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(đpcm\right)\)

Bài 1.Cho \(x+y+z=0\)Tính \(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)Bài 2. Cho \(a+b+c=1;a^2+b^2+c^2=1;\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)CMR: \(xy+yz+zx=0\)Bài 3. Cho \(3x-y=2z\)                \(2x+y=7z\)Tính \(S=\frac{x^2-2xy}{x^2+y^2}\)với \(x,y\ne0\)Bài 4. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)Tính \(E=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)Bài 5....
Đọc tiếp

Bài 1.Cho \(x+y+z=0\)

Tính \(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)

Bài 2. Cho \(a+b+c=1;a^2+b^2+c^2=1;\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

CMR: \(xy+yz+zx=0\)

Bài 3. Cho \(3x-y=2z\)

                \(2x+y=7z\)

Tính \(S=\frac{x^2-2xy}{x^2+y^2}\)với \(x,y\ne0\)

Bài 4. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Tính \(E=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Bài 5. Cho \(abc\ne0\)thỏa mãn: \(2ab+6bc+2ac=0\)

Tính \(A=\frac{\left(a+2b\right)\left(2b+3c\right)\left(3c+a\right)}{6abc}\)

Bài 6. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Tính \(Y=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)

Bài 7. Cho \(\hept{\begin{cases}10a^2-3b^2+5ab=0\\9a^2-b^2\ne0\end{cases}}\)

Tính \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)

6
15 tháng 2 2019

làm nổi à bạn. 

15 tháng 2 2019

1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)

\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)

9 tháng 5 2018

Áp dụng BĐT Bunhiacốpxki dạng phân thức có

\(\dfrac{a^2}{a+2b^2}+\dfrac{b^2}{b+2c^2}+\dfrac{c^2}{c+2a^2}\ge\dfrac{\left(a+b+c\right)^2}{a+2b^2+b+2c^2+c+2a^2}=\dfrac{9}{3+2\left(a^2+b^2+c^2\right)}\) (1)

Áp dụng BĐT Bunhiacốpxki có:

\(\left(a.1+b.1+c.1\right)^2\ge\left(1+1+1\right)\left(a^2+b^2+c^2\right)\)

\(\Rightarrow9\ge3\left(a^2+b^2+c^2\right)\Rightarrow3\ge a^2+b^2+c^2\Rightarrow2\left(a^2+b^2+c^2\right)\le6\) (2)

Thay (2) vào (1) có \(\dfrac{a^2}{a+b^2}+\dfrac{b^2}{b+2c^2}+\dfrac{c^2}{c+a^2}\ge\dfrac{9}{3+6}=1\) (đpcm)

Dấu = xảy ra khi a= b=c=1

12 tháng 3 2021

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)

Vì \(a,b,c\ne0\Rightarrow abc\ne0\)

\(\Rightarrow bc+ac-ab=0\)

\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-2abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}}\)

\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)

\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)

CHÚC BẠN HỌC TỐT

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)

Vì \(a,b,c\ne0\Rightarrow a.b.c\ne0\)

\(\Rightarrow bc+ac-ab=0\)

\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}\)

\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)

\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)

Vậy \(E=0\)

13 tháng 7 2017

anh nên lên học 24h để được giả đáp tốt hơn !!

14 tháng 6 2017

\(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}=\frac{2}{a+2b+2c}\)

\(\Leftrightarrow\frac{2b+a}{ab}=\frac{2c-\left(a+2b+2c\right)}{c\left(a+2b+2c\right)}\)

\(\Leftrightarrow\frac{a+2b}{ab}=\frac{-\left(2b+a\right)}{ac+2ab+2c^2}\)

\(\Leftrightarrow\left(a+2b\right)\left(ac+2bc+2c^2\right)+\left(2b+a\right)ab=0\)

\(\Leftrightarrow\left(a+2b\right)\left(ac+2bc+2c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+2b\right)\left[a\left(b+c\right)+2c\left(b+c\right)\right]=0\)

\(\Rightarrow\left(a+2b\right)\left(b+c\right)\left(2c+a\right)=0\) (đpcm)