K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2022

Theo BĐT Cauchy Schwarz 

\(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=9\)

Dấu ''='' xảy ra khi a = b = c = 1/3 

11 tháng 7 2020

Áp dụng Bất đẳng thức Cauchy cho 2 số không âm ta được :

\(a+b\ge2\sqrt[2]{ab}\)

\(b+c\ge2\sqrt[2]{bc}\)

\(c+a\ge2\sqrt[2]{ca}\)

Nhân theo vế các bất đẳng thức cùng chiều ta được :

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(2\sqrt[2]{ab}\right)\left(2\sqrt[2]{bc}\right)\left(2\sqrt[2]{ca}\right)\)

\(< =>B\ge8\sqrt[2]{a^3b^3c^3}=8abc\)

Mặt khác theo giả thiết ta có : \(abc=8\)

Khi đó \(B\ge8.8=64\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=2\)

Vậy \(Min_B=64\)khi \(a=b=c=2\)

11 tháng 7 2020

sửa lại cho mình  dòng 7 trong căn là mũ 2 nhé , đánh lộn 

7 tháng 12 2020

bạn kiểm tra lại xem có sai đề không

19 tháng 2 2020

*) \(MinA\) :

Ta thấy: a,b,c đều là các số thực không âm.

Do đó : \(A\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=0,c=1\) và các hoán vị.

\(*)MaxA\) :

Giả sử \(a\ge b\ge c\) \(\Rightarrow3a\ge a+b+c=1\) 

\(\Rightarrow1-3a\le0\)

Ta có : \(A=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)

\(=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+3abc-3abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(=ab+bc+ca-3abc\)

\(=a\left(b+c\right)+bc\left(1-3a\right)\) \(\le\frac{\left(a+b+c\right)^2}{4}+0\) ( do \(1-3a\le0\) )    \(=\frac{1}{4}\)

hay \(A\le\frac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2},c=0\) và các hoán vị.

\(\)