Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\text{BĐT}\Leftrightarrow \left ( \frac{a^2}{b}-2a+b \right )+\left ( \frac{b^2}{c}-2b+c \right )+\left ( \frac{c^2}{a}-2c+a \right )\geq \frac{6(a^2+b^2+c^2)}{a+b+c}-2(a+b+c)\)
\(\Leftrightarrow \frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a}\geq \frac{2[(a-b)^2+(b-c)^2+(c-a)^2)]}{a+b+c}(1)\)
Do BĐT có tính hoán vị giữa các biến nên giả sử $b$ nằm giữa $a$ và $c$
Áp dụng BĐT Cauchy-Schwarz:
\(\Leftrightarrow \frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a}\geq \frac{[(a-b)+(b-c)+(a-c)]^2}{a+b+c}=\frac{4(a-c)^2}{a+b+c}(2)\)
Ta chỉ cần CM \(\frac{4(a-c)^2}{a+b+c}\geq \frac{2[(a-b)^2+(b-c)^2+(c-a)^2]}{a+b+c}(3)\Leftrightarrow (a-c)^2\geq (a-b)^2+(b-c)^2\)
\(\Leftrightarrow (b-a)(b-c)\leq 0\). Điều này luôn đúng với $b$ nằm giữa $a$ và $c$
Từ \((1);(2);(3)\Rightarrow \text{đpcm}\). Dấu $=$ xảy ra khi $a=b=c$
\(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge2\sqrt{\frac{4ab}{c^2}}.2\sqrt{\frac{4bc}{a^2}}.2\sqrt{\frac{4ac}{b^2}}=64\)
Dấu "=" xảy ra khi \(a=b=c=2\)
\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
\(P=\sum\frac{a}{\sqrt{\left(2a\right)^2+\left(b+c\right)^2}}\le\sqrt{2}\sum\frac{a}{2a+b+c}=\sqrt{2}\sum a\left(\frac{1}{a+b+a+c}\right)\le\frac{\sqrt{2}}{4}\sum\left(\frac{a}{a+b}+\frac{a}{a+c}\right)=\frac{3\sqrt{2}}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)
Đề là
Cho \(a;b;c\ge0\) thỏa mãn a+b+c = 1
Cmr : \(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}\ge\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}\) ak bạn
Ta có:a+b+c=1
\(đpcm\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{2}{a+2b+c}+\frac{2}{2a+b+c}+\frac{2}{a+b+2c}\)(*)
Áp dụng BĐT Bunhiacopxki:
\(\frac{1}{a+b}+\frac{1}{b+c}\ge\frac{4}{a+2b+c}\)(1)
Tương tự:\(\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{4}{a+b+2c}\)(2)
\(\frac{1}{a+b}+\frac{1}{c+a}\ge\frac{4}{2a+b+c}\)(3)
Cộng theo từng vế của (1);(2);(3) ta đc:(*)(đpcm)
Dấu ''='' xảy ra\(\Leftrightarrow a=b=c=\frac{1}{3}\)
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Gs a+b+c>1/a+1/b+1/c nhưng không t/m một và chỉ một trong 3 số a,b,c lớn hơn 1 TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1) TH2 có 2 số lớn hơn 1 Gs a>1,b>1,c<1 suy ra a-1>0,b-1>0,c-1<0 suy ra (a-1)(b-1)(c-1)<0 suy ra abc+a+b+c-(ab+bc+ca)-1<0 suy ra a+b+c<ab+bc+ca suy ra a+b+c<abc/c+abc/a+abc/b suy ra a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai) suy ra đpcm
Lời giải:
Đặt \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{4c}{a+b}\Rightarrow P+6=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{4(a+b+c)}{a+b}\)
Áp dụng BĐT Cauchy-Schwarz:
\(P+6\geq (a+b+c)\frac{(1+1+2)^2}{2(a+b+c)}=8\)
\(\Rightarrow P\geq 2\)
Dấu bằng xảy ra khi \(\frac{1}{b+c}=\frac{1}{c+a}=\frac{2}{a+b}\). Điều này không thể xảy ra do đó \(P>2\)
Ta có đpcm.