Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+bc/b+c + b+ca/c+a + c+ab/a+b
ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a
tương tự với các phân số còn lại:
ta đc:H=(1-b)(1-c)/1-a + (1-a)(1-c)/1-b + (1-a)(1-b)/1-c
đặt 1-a=x, 1-b=y, 1-c=z =>
yz/x + xz/y + xy/z
áp dụng bđt cô-sin =>
yz/x + xz/y >= 2 căn yz/x . xz/y=2z
tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y
=> 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4
=> H>= 2
=> bt trên >= 2
a+bc/b+c + b+ca/c+a + c+ab/a+b ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a tương tự với các phân số còn lại: ta đc:H=(1-b)(1-c)/1-a + (1-a)(1-c)/1-b + (1-a)(1-b)/1-c đặt 1-a=x, 1-b=y, 1-c=z => yz/x + xz/y + xy/z áp dụng bđt cô-sin => yz/x + xz/y >= 2 căn yz/x . xz/y=2z tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y => 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4 => H>= 2 => bt trên >= 2
Áp dụng bất đẳng thức bu nhi a ta có
\(\left(a+2b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)=3.\left(a^2+2b^2\right)\le3.3c^2=9c^2\)
=> \(a+2b\le3c\)
Mà \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)
=> \(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\left(ĐPCM\right)\)
Có : (a-b)^2>=0
<=>a^2+b^2>=2ab (2)
<=>a^2+b^2+2ab>=4ab
<=>(a+b)^2>=4ab (1) hay 4ab<=(a+b)^2 (3)
Với a,b > 0 thì chia hai vế (1) cho ab.(a+b) ta được : a+b/ab >= 4/a+b <=> 1/a + 1/b >= 4/a+b (4)
Áp dụng bđt (2) ; (3) và (4) thì VT = (4/a^2+b^2 + 1/2ab) + (4ab+1/4ab)+1/4ab
>= 4/(a^2+b^2+2ab) + 2\(\sqrt{\frac{4ab.1}{4ab}}\)+ \(\frac{1}{\left(a+b\right)^2}\)
= 4/(a+b)^2 + 2 + 1/(a+b)^2 >= 4/1 + 2 + 1/1 = 7 => ĐPCM
Dấu "=" xảy ra <=> a=b ; a+b=1 <=> a=b=1/2
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}\)(*)
Với a, b > 0 ta có :\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\)
Ta lại có : 12 = (a +b)2 >= 4ab. Suy ra 1/ab >= 4
Vậy (*) >= 9
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)=\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)\)
\(=4+\frac{2a}{b}+\frac{2b}{a}+1=5+\frac{2a}{b}+\frac{2b}{a}\ge5+2\sqrt{\frac{2a}{b}.\frac{2b}{a}}=9\left(BĐTcôsi\right)\)
Dấu "=" xảy ra khi: a=b