Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12. Ta có \(ab\le\frac{a^2+b^2}{2}\)
=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)
Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)
=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)
=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)
Khi đó
\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)
Dấu bằng xảy ra khi a=b=c=1
Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1
13. Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)
=> \(1\ge\frac{9}{a+b+c+3}\)
=> \(a+b+c\ge6\)
Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)
Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)
Cộng 3 BT trên ta có
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)
Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)
=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)
Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)
<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)
<=> \(a^2+b^2\ge2ab\)(luôn đúng )
=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)
=> \(P\ge2\)
Vậy \(MinP=2\)khi a=b=c=2
Lưu ý : Chỗ .... là tương tự
Lời giải:
Đặt \(\left(\frac{ab}{c}, \frac{bc}{a}, \frac{ca}{b}\right)=(x,y,z)\)
Khi đó: \(xy=b^2; yz=c^2; xz=a^2\). Bài toán trở về dạng:
Cho $x,y,z>0$ thỏa mãn: \(xy+yz+xz=1\)
Tìm GTNN của \(P=x+y+z\)
Thật vậy: Ta đã biết một BĐT quen thuộc theo AM-GM là:
\((x+y+z)^2\geq 3(xy+yz+xz)\)
\(\Rightarrow x+y+z\geq \sqrt{3(xy+yz+xz)}=\sqrt{3}\)
Vậy \(P_{\min}=\sqrt{3}\)
Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Lời giải:
Ta có: \(\sqrt{a-c}+\sqrt{b-c}=\sqrt{a+b}\)
\(\Rightarrow (\sqrt{a-c}+\sqrt{b-c})^2=a+b\)
\(\Leftrightarrow a-c+b-c+2\sqrt{(a-c)(b-c)}=a+b\)
\(\Leftrightarrow \sqrt{(a-c)(b-c)}=c\)
Bình phương hai vế: \(c^2=(a-c)(b-c)\)
\(\Leftrightarrow ab=ac+bc(*)\)
----------------------------
Ta có: \(P=\frac{bc}{a^2}+\frac{ac}{b^2}-\frac{ab}{c^2}\)
\(P=\frac{(bc)^3+(ac)^3-(ab)^3}{(abc)^2}\)
Xét tử số kết hợp với $(*)$
\((bc)^3+(ac)^3-(ab)^3=(bc+ac)^3-3bc.ac(bc+ac)-(ab)^3\)
\(=(ab)^3-3bc.ac.ab-(ab)^3=-3(abc)^2\)
Do đó: \(P=\frac{-3(abc)^2}{(abc)^2}=-3\)
Ta có: \(\dfrac{a^3}{a^2+b^2}\ge\dfrac{2a-b}{2}\)
Thật vậy, bất đẳng thức trên tương đương
\(b\left(a-b\right)^2\ge0\)(Luôn đúng)
Tương tự ta có
\(\dfrac{b^3}{b^2+c^2}\ge\dfrac{2b-c}{2};\dfrac{c^3}{a^2+b^2}\ge\dfrac{2c-a}{2}\)
\(\Rightarrow P\ge\dfrac{a+b+c}{2}=\dfrac{1}{2}\)
GTNN là \(\dfrac{1}{2}\Leftrightarrow a=b=c=\dfrac{1}{3}\)
Ta sử dụng bất đẳng thức quen thuộc \(\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}\leftrightarrow3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\leftrightarrow\left(x-y\right)^2\ge0.\)
Xét biểu thức \(Q=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\to P-Q=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0.\) Vậy \(P=Q\) . Mặt khác,\(2P=P+Q=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}=2\cdot2013\cdot\sqrt{3}\)
Do đó \(P\ge2013\cdot\sqrt{3}.\) Dấu bằng xảy ra khi \(a=b=c=2013\sqrt{3}.\)
\(P=\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\le\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\le\dfrac{2}{3}\left[\left(a+b+c\right)-\dfrac{a+b+c}{2}\right]=\dfrac{2}{3}\left(2019-\dfrac{2019}{2}\right)=673\)
Bạn ơi đề bảo tìm giá trị nhỏ nhất cơ mà