Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3
Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+2a\left(b+c\right)+\left(b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\text{Đ}PCM\)
2b)
Ta có: \(x^2+y^2-4x-2y+5=0\Leftrightarrow x^2+y^2-4x-2y+4+1=0\Leftrightarrow\left(x-2\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)
c) \(x^4-11x^2+4x-21=0\Leftrightarrow x^4-10x^2+25-x^2+4x-4=0\)
\(\Leftrightarrow\left(x^2-5\right)^2-\left(x-2\right)^2=0\Leftrightarrow\left(x^2-x-5+2\right)\left(x^2+x-5-2\right)=0\)
đến đây tự làm
bai 1
a) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|2,15\right|\)
\(\left|x+\dfrac{4}{15}\right|-3,75=-2,,15\)
\(\left|x+\dfrac{4}{15}\right|=-2,15+3,75=1,6\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{4}{15}=1,6\\x+\dfrac{4}{15}=-1,6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{28}{15}\end{matrix}\right.\)
Vậy ....
b) \(\left|\dfrac{5}{3}x\right|=\left|-\dfrac{1}{6}\right|\)
\(\left|\dfrac{5}{3}x\right|=\dfrac{1}{6}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)
c) \(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|-\dfrac{3}{4}=\left|-\dfrac{3}{4}\right|\)
\(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|-\dfrac{3}{4}=\dfrac{3}{4}\)
\(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|=\dfrac{3}{2}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{3}{4}=\dfrac{3}{2}\\\dfrac{3}{4}x-\dfrac{3}{4}=-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\-1\end{matrix}\right.\)
bai 2
a) \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\dfrac{1}{4}-\left|y\right|\)
\(\left|\dfrac{1}{6}+x\right|=\dfrac{1}{4}-\left|y\right|\) (*)
với mọi x ta luôn có \(\left|\dfrac{1}{6}+x\right|\ge0\)
\(\Rightarrow\dfrac{1}{4}-\left|y\right|\ge0\)
\(\Rightarrow\left|y\right|\le\dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{4}-\left|y\right|=\left|\dfrac{1}{4}-y\right|\)
Nên từ * \(\Rightarrow\left|\dfrac{1}{6}+x\right|=\left|\dfrac{1}{4}-y\right|\)
\(\Rightarrow\left|\dfrac{1}{6}+x\right|-\left|\dfrac{1}{4}-y\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{6}+x=0\\\dfrac{1}{4}-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=\dfrac{1}{4}\end{matrix}\right.\)
b) \(\left|x-y\right|+\left|y+25\right|=0\)
với mọi x, y tao luôn có \(\left\{{}\begin{matrix}\left|x-y\right|\ge0\\\left|y+25\right|\ge0\end{matrix}\right.\)
mà \(\left|x-y\right|+\left|y+25\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|=0\\\left|y+25\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y\\y=-25\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=-25\\y=-25\end{matrix}\right.\)
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)
\(\Leftrightarrow a^4+b^4+a^3b+ab^3\le2\left(a^4+b^4\right)\)
\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]\ge0\) * đúng *
b
Hiển hiên
\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)
\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
Dấu "=" xảy ra <=> a=b
Cách 1:
Theo BĐT AM - GM, ta được: \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{b}{a}+\frac{a}{b}+1\)
\(\ge2+2\sqrt{\frac{a}{b}.\frac{b}{a}}=2+2=4\)
Đẳng thức xảy ra khi a = b
Cách 2;
Áp dụng BĐT AM - GM, ta được:
\(a+b\ge2\sqrt{ab}\)(1)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)(2)
Nhân theo từng vế của (1) và (2), ta được:
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
Đẳng thức xảy ra khi a = b
Ngắn hơn nhưng phải chứng minh lại :V
Theo Bunhiacopski dạng phân thức:
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge\left(a+b\right)\cdot\frac{4}{a+b}=4\)
Đẳng thức xảy ra tại a=b