\(a^2+b^2+c^2\) =1 và \(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

Các bạn giúp mình với, mai mình phải nộp rồi, ai nhanh mình k cho !!!

2 tháng 12 2018

bn này ra toàn bài khó nhỉ :)

đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)

\(\Rightarrow x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=k^2.\left(a^2+b^2+c^2\right)=k^2.1=k^2\left(1\right)\)

\(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=\left[k.\left(a+b+c\right)\right]^2=\left(k.1\right)^2=k^2\left(2\right)\)

từ (1) và (2) => đpcm 

ps: ko chắc lắm :)) 

24 tháng 12 2018

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

24 tháng 12 2018

cảm ơn nhiều

11 tháng 10 2016

Ta có:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\)

Ta có:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{xa^2}{a^3}=\frac{yb^2}{b^3}=\frac{zc^2}{c^3}=\frac{a^2x+b^2y+c^2z}{a^3+b^3+c^3}\)

Ta có\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^3}{a^2x}=\frac{y^3}{b^2y}=\frac{z^3}{c^2z}=\frac{x^3+y^3+z^3}{a^2x+b^2y+c^2z}\)

\(A=\frac{\left(x^3+y^3+z^3\right)\left(a^3+b^3+c^3\right)\left(a+b+c\right)}{\left(x+y+z\right)\left(a^2x+b^2y+c^2z\right)^2}=\frac{x^3+y^3+z^3}{a^2x+b^2y+c^2z}\cdot\frac{a^3+b^3+c^3}{a^2x+b^2y+c^2z}\cdot\frac{a+b+c}{x+y+z}\)

\(=\frac{x^2}{a^2}\cdot\frac{a}{x}\cdot\frac{a}{x}\)=1

12 tháng 10 2016

[0ferh0g-y\pj=up-l][ki;,'j;.gk9r8goyu-[jl;mjfiweyu

2 tháng 9 2016

Chào em, em hãy xem lời giải dưới đây nhé!

Lời giải:

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

bz−cy/a=cx−az/b=ay−bx/c=abz−acy/a2=bcx−abz/b2=acy−bcx/c2

=abz−acy+bcx−abz+acy−bcx/a2+b2+c2   =0               (*)

Từ (*) suy ra bz−cy/a=0 nên bz−cy=0⇒bz=cy. Hay b/y=c/z     (1)

Từ (*) suy ra cx−az/b=0 nên cx−az=0⇒cx=az. Hay c/z=a/x     (2)

Từ (1) và (2) ta suy ra a/x=b/y=c/z.
b) 

Có : x/z+y+1=y/x+z+1=z/x+y−2=x+y+z/2(x+y+z)=x+y+z=1/2

Từ đó, ta có : z/x+y−2=1/2⇒2z = x+y−2⇒2z+2=x+y

Lại có : x+y+z=1/2⇔2z+2+z=1/2⇔3z=1/2−2=−3/2⇔z=−1/2

Từ đó tìm đc x, y