Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\left(x;y;z\ne0\right)\)
=> \(\frac{xyz}{azy+bxz=}=\frac{xyz}{xbz+xcy}=\frac{yzx}{ycx+azy}\)
=>\(zay+bxz=xbz+xyc=ycx+azy\)
\(\Rightarrow\hept{\begin{cases}za=cx\\bx=ay\end{cases}}\)
Đặt \(\frac{x}{a}=\frac{z}{c}=\frac{y}{b}=t\left(t\ne0\right)\)
=> x = at ; z = ct ; y = bt
mà\(\frac{xy}{ay+bx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\)\(\frac{atbt}{abt+bat}=\frac{a^2t^2+b^2t^2+c^2t^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{t}{2}=t^2\Rightarrow t=\frac{1}{2}\)
\(\Rightarrow t=\frac{1}{2}\Rightarrow\hept{\begin{cases}x=\frac{a}{2}\\y=\frac{b}{2}\\z=\frac{c}{2}\end{cases};\left(a,b,c\ne0\right)}\)
Lời giải:
Từ \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{xz}{az+cx}\Leftrightarrow \frac{1}{\frac{a}{x}+\frac{b}{y}}=\frac{1}{\frac{b}{y}+\frac{c}{z}}=\frac{1}{\frac{a}{x}+\frac{c}{z}}\)
Đặt \(\left (\frac{a}{x},\frac{b}{y},\frac{c}{z}\right)=(m,n,p)\Rightarrow \frac{1}{m+n}=\frac{1}{n+p}=\frac{1}{m+p}\)
Do đó \(m=n=p\). Thay \(n,p\) bằng \(m\)
\(\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}=m\Rightarrow a=mx,b=my,c=mz\)
\(\frac{1}{m+n}=\frac{1}{2m}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2+y^2+z^2}{m^2(x^2+y^2+z^2)}=\frac{1}{m^2}\)\(\Rightarrow m=2\)
Vậy \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=m+n+p=3m=3.2=6\)