Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a}{b}=\frac{15}{21}=\frac{135}{189}\)
\(\frac{b}{c}=\frac{9}{12}=\frac{3}{4}=\frac{21}{28}=\frac{189}{252}\)
\(\frac{c}{d}=\frac{9}{11}=\frac{252}{308}\)
\(\Rightarrow a=135\)
\(b=189\)
\(c=252\)
\(d=308\)
\(\left(3n+5\right)⋮n+1\)
\(\Rightarrow3n+3+2⋮n+1\)
\(\Rightarrow3\left(n+1\right)+2⋮n+1\)
mà : \(3\left(n+1\right)⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)
Với n + 1 = 1 => n = 0
với n + 1 = -1 => n = -2
với n + 1 = 2 => n = 1
với n + 1 = -2 => n = -3
=> n = 0; -2; -1; 3
Mình ko bít có đúng ko nên sai đừng trách mình nhé !
\(A=\frac{7^{2011}+1}{7^{2013}+1}\)
\(7^2.A=\frac{7^{2013}+49}{7^{2013}+1}=\frac{7^{2013}+1+48}{7^{2013}+1}=\)\(\frac{7^{2013}+1}{7^{2013}+1}+\frac{48}{7^{2013}+1}=1\frac{48}{7^{2013}+1}\)
\(B=\frac{7^{2013}+1}{7^{2015}+1}\)
\(7^2.B=\)\(=\frac{7^{2015}+49}{7^{2015}+1}=\)\(\frac{7^{2015}+1+48}{7^{2015}+1}=\)\(\frac{7^{2015}+1}{7^{2015}+1}+\frac{48}{7^{2015}+1}=1\frac{48}{7^{2015}+1}\)
\(Vì\) \(1\frac{48}{7^{2013}+1}>1\frac{48}{7^{2013}+1}\)\(\Rightarrow7^2.A>7^2.B\)\(\Rightarrow A>B\)
\(Vậy\) \(A>B\)
Bài 2 nè
ta xét B trước:
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..\)\(.....+\frac{1}{2015}-\frac{1}{2016}\)
=\(\left(\frac{1}{1}+\frac{1}{3}+....+\frac{1}{2015}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{2016}\right)\)
\(=\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}\right)-\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)
vậy A:B\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)\(:\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)
\(=1\)
a.Gọi số đó là a,ta có;
a=5c+2=>a+3=5c+2+3=5c+5=5(c+1)chia hết cho 5 (c thuộc N)
Vì 70 chia hết cho 5 nên (a+3)+70 cũng chia hết cho 5 (1)
a=13b+5=>a+8=13b+13=13(1+b)chia hết cho 13 (b thuộc N)
Vì 65 chia hết cho 13 nên (a+8)+65chia hết cho 13(2)
Từ (1) và (2) =>a+73 chia hết cho BCNN(13;5)<=>a+73 chia hết cho 65
=>a=65k-73
Để a nhỏ nhất ta chọn k=3.Khi đó a= 122
Ta có: \(a⋮b,b⋮c\) => a chia hết cho cả b và c
Mà \(a⋮a\) Do đó a chia cho a,b,c
=> a là [a,b,c]