\(a,b,c,d\) khác 0 và \(\frac{a}{b}=\frac{c}{d}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)

Khi đó:

\(\dfrac{a-b}{a}=\dfrac{bt-b}{bt}=\dfrac{b\left(t-1\right)}{bt}=\dfrac{t-1}{t}\)

\(\dfrac{c-d}{c}=\dfrac{dt-d}{dt}=\dfrac{d\left(t-1\right)}{dt}=\dfrac{t-1}{t}\)

Ta có điều phải chứng minh

20 tháng 5 2019

Ta có:\(\frac{a}{a'}+\frac{b'}{b}=1\)

\(\Rightarrow ab+a'b'=a'b\)

\(\Rightarrow abc+a'b'c=a'bc\left(1\right)\)

Lại có:\(\frac{b}{b'}+\frac{c'}{c}=1\)

\(\Rightarrow bc+b'c'=b'c\)

\(\Rightarrow a'bc+a'b'c'=a'b'c\left(2\right)\)

Cộng vế theo vế của (1) và (2) ta được:

\(abc+a'b'c'=0\)

2 tháng 8 2019

#)Giải : 

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow\frac{b}{a}-1=\frac{d}{c}-1\Rightarrow\frac{b-a}{a}=\frac{d-c}{d}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)

\(\Rightarrow ac=\left(a-b\right)\left(c-d\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\left(đpcm\right)\)

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}\Rightarrow\frac{a+b}{a}=\frac{c+d}{c}\left(đpcm\right)\)

5 tháng 1 2016

bằng 4 bạn nhé !

Tick cho mình nha !

6 tháng 1 2016

giải sao vậy mình hk hỉu

AH
Akai Haruma
Giáo viên
27 tháng 8 2018

Lời giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó:

\(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b(k+1)}{d(k+1)}=\frac{b}{d}\)

\(\frac{a-b}{c-d}=\frac{bk-b}{dk-d}=\frac{b(k-1)}{d(k-1)}=\frac{b}{d}\)

\(\Rightarrow \frac{a+b}{c+d}=\frac{a-b}{c-d}\) (đpcm)

Dễ nhất là bạn hãy đặt k đi,  thay vào là nó sẽ ra thôi. 

24 tháng 6 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2k+2b^2k+b^2}{d^2k+2d^2k+d^2}=\frac{3b^2k}{3d^2k}=\frac{b^2}{d^2}\)

Tương tự vs mấy  cái còn lại là ra ngay thôi

2 tháng 12 2015

Áp dụng tính chất dãy tỉ số bằng nhau \(\Rightarrow\frac{a}{3\cdot b}=\frac{b}{3\cdot c}=\frac{c}{3\cdot d}=\frac{d}{3\cdot a}=\frac{a+b+c+d}{3\cdot b+3\cdot c+3\cdot d+3\cdot a}=\frac{a+b+c+d}{3\cdot\left(a+b+c+d\right)}=\frac{1}{3}\)

\(\Rightarrow a=\frac{1}{3}\cdot3\cdot b;b=\frac{1}{3}\cdot3\cdot c;c=\frac{1}{3}\cdot3\cdot d;d=\frac{1}{3}\cdot3\cdot a\)\(\Rightarrow a=b;b=c;c=d;d=a\Rightarrow a=b=c=d\)(đpcm)

Ta có :

 \(\frac{a}{c}=\frac{c}{b}\)

\(\Rightarrow ab=c^2\)

Lại có :

\(\frac{a^2+c^2}{b^2+c^2}\)  \(\Rightarrow\frac{a^2+ab}{b^2+ab}\)   \(\Rightarrow\frac{a.\left(a+b\right)}{b.\left(a+b\right)}\)    \(\Rightarrow\frac{a}{b}\)

Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)

3 tháng 1 2020

a/c=cb

=>ab=c2