Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hi vọng là tìm GTLN:
Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)
\(\Rightarrow a+b+c\le3\).
Áp dụng bất đẳng thức Schwarz ta có:
\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).
Đẳng thức xảy ra khi a = b = c = 1.
Theo đề ra, ta có:
\(a^2+b^2+c^2\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
Theo BĐT Cô-si:
\(\left\{{}\begin{matrix}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)
Do vậy \(M\ge14\left(a^2+b^2+c^2\right)+\dfrac{3\left(ab+bc+ac\right)}{a^2+b^2+c^2}\)
Ta đặt \(a^2+b^2+c^2=k\)
Luôn có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)
Vì thế nên \(k\ge\dfrac{1}{3}\)
Khi đấy:
\(M\ge14k+\dfrac{3\left(1-k\right)}{2k}=\dfrac{k}{2}+\dfrac{27k}{2}+\dfrac{3}{2k}-\dfrac{3}{2}\ge\dfrac{1}{3}.\dfrac{1}{2}+2\sqrt{\dfrac{27k}{2}.\dfrac{3}{2k}}-\dfrac{3}{2}=\dfrac{23}{3}\)
\(\Rightarrow Min_M=\dfrac{23}{3}\Leftrightarrow a=b=c=\dfrac{1}{3}\).
a2 + b2 + c2 = ( a - b )2 + ( b - c )2 + ( c - a )2
<=> a2 + b2 + c2 = a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2
<=> a2 + b2 + c2 - 2ab - 2bc - 2ca = 0 ( bớt a2 + b2 + c2 ở cả hai vế )
<=> a2 + b2 + c2 - 2( ab + bc + ca ) = 0
<=> a2 + b2 + c2 - 2.9 = 0
<=> a2 + b2 + c2 - 18 = 0
<=> a2 + b2 + c2 = 18
Xét ( a + b + c )2 ta có :
( a + b + c )2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
= ( a2 + b2 + c2 ) + 2( ab + bc + ca )
= 18 + 2.9
= 18 + 18 = 36
=> ( a + b + c )2 = 36
=> a + b + c = 6 ( do a, b, c là các số dương )
\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2+2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2 +\left(c-a\right)^2=0\)
do...
=> a=b=c
=> A = 0
\(P=\frac{a}{ab}+a+2+\frac{b}{bc}+b+2+\frac{2c}{ac}+c+2\)
Hay
\(P=\frac{a}{ab+a+2}+\frac{b}{bc+b+2}+\frac{2c}{ac+c+2}\)