Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ gt,ta có :\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\Rightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
=> 0 = (a + b)(ca + cb + c2) - [-(a + b)ab] = (a + b)(ca + cb + c2 + ab) = (a + b)(c + a)(c + b)
=> a + b = 0 hoặc c + a = 0 hay c + b = 0.Giả sử a = -b thì a15 = -b15 nên a15 + b15 = 0 => N = 0
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{-1}{c}\Rightarrow\frac{a+b}{ab}=\frac{-1}{c}\)
\(\Rightarrow a+b=\frac{-ab}{c}\)
Tương tự : \(b+c=\frac{-bc}{a};a+c=\frac{-ac}{b}\)
thay vào A,ta được :
\(A=\frac{\frac{-ab}{c}.\frac{-bc}{a}.\frac{-ac}{b}}{abc}=\frac{-a^2b^2c^2}{abc}=-abc\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{c}-\dfrac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\times\dfrac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
\(\Rightarrow N=0\)
bđt cần c/m <=>
\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)
\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)
\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)
ok
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{2\left(a+b+c\right)}{a+b+c}\)= 2
Suy ra
a + b = 2c
b + c = 2a
a + c = 2b
M = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
= \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
=\(\frac{2c}{b}.\frac{2a}{c}.\frac{2b}{a}\)
=\(\frac{8abc}{abc}\)
= 8
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) hinh nhu theo co dieu kien a,b,c ko dong thoi = 0
<=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
<=> \(\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)
<=> \(\left(a+b\right)\left(ac+bc+c^2\right)=-ab\left(a+b\right)\)
<=> \(\left(a+b\right)\left(ac+bc+c^2\right)+ab\left(a+b\right)=0\)
<=> \(\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
<=> \(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
<=> a+b=0 hoac a+c=0 hoac b+c=0
do khi luy thua a,b,c len cach so mu le la 27,41,2019 thi a,b,c ko doi dau nen \(a^{27}+b^{27}=0.hoac.b^{41}+c^{41}=0.hoac.c^{2019}+a^{2019}=0\)
P = 0
Vay P = 0
Study well
Ta có : \(\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}-\frac{1}{a}\Rightarrow\frac{b+c}{bc}=\frac{a-a-b-c}{a^2+ab+ac}\)
\(\Leftrightarrow\frac{b+c}{bc}=\frac{-b-c}{a^2+ab+ac}\Leftrightarrow\left(b+c\right)\left(a^2+ab+ac\right)=-\left(b+c\right)bc\)
\(\left(b+c\right)\left(a^2+ab+ac\right)+\left(b+c\right)bc=0\)
\(\Rightarrow\left(b+c\right)\left(a^2+ab+ac+bc\right)=0\)
\(\Leftrightarrow\left(b+c\right)[\left(a+b\right)a+c\left(a+b\right)]=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(a+c\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}b=-c\\\orbr{\begin{cases}a=-b\\c=-a\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}b^{41}+c^{41}=0\\\orbr{\begin{cases}a^{27}+b^{27}=0\\c^{2019}+a^{2019}=0\end{cases}}\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}b=-c\\\orbr{\begin{cases}a=-b\\c=-a\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}b^{41}+c^{41}=0\\\orbr{\begin{cases}a^{27}+b^{27}=0\\a^{2019}+c^{2019}=0\end{cases}}\end{cases}}}\)
18. Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)
\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{1}{abz}+\frac{1}{xbc}+\frac{1}{acy}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{ayz+bxz+cxy}{abcxyz}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
19. Nhân cả hai vế của đẳng thức giả thiết với \(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\)được
\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=0\)
Ta có ;
\(\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=\frac{\left(a+b\right)\left(a-b\right)+\left(b+c\right)\left(b-c\right)+\left(c+a\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Vì vai trò bình đẳng của các ẩn \(a,b,c\) là như nhau nên không mất tính tổng quát, ta có thể giả sử:
\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do \(a,b,c\) đôi một khác nhau nên cũng không đồng thời bằng nhau)
Áp dụng bđt \(AM-GM\) cho từng bộ số gồm có các số không âm, ta có:
\(\left(i\right)\) Với \(\frac{1}{\left(a-b\right)^2}>0;\) \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\) \(\left(1\right)\)
\(\left(ii\right)\) Với \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)
\(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\) \(\left(2\right)\)
\(\left(iii\right)\) Với \(\frac{1}{\left(c-a\right)^2}>0;\) \(\frac{c-a}{16}>0\)
\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)
\(\Rightarrow\) \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\) \(\left(3\right)\)
Cộng từng vế ba bất đẳng thức \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) , ta được:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)
nên \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)
Mặt khác, từ \(\left(\alpha\right)\) ta suy ra được: \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)
nên \(a+2\ge c\) hay nói cách khác \(a-c\ge-2\)
Do đó, \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}a=0\\b=1\\c=2\end{cases}}\) (thỏa mãn \(\left(\alpha\right)\) )
Vì vai trò bình đẳng của các ẩn \(a,b,c\) là như nhau nên không mất tính tổng quát, ta có thể giả sử:
\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do \(a,b,c\) đôi một khác nhau nên cũng không đồng thời bằng nhau)
Áp dụng bđt \(AM-GM\) cho từng bộ số gồm có các số không âm, ta có:
\(\left(i\right)\) Với \(\frac{1}{\left(a-b\right)^2}>0;\) \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\) \(\left(1\right)\)
\(\left(ii\right)\) Với \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)
\(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\) \(\left(2\right)\)
\(\left(iii\right)\) Với \(\frac{1}{\left(c-a\right)^2}>0;\) \(\frac{c-a}{16}>0\)
\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)
\(\Rightarrow\) \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\) \(\left(3\right)\)
Cộng từng vế ba bất đẳng thức \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) , ta được:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)
nên \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)
Mặt khác, từ \(\left(\alpha\right)\) ta suy ra được: \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)
nên \(a+2\ge c\) hay nói cách khác \(a-c\ge-2\)
Do đó, \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=0;b=1;c=2\) (thỏa mãn \(\left(\alpha\right)\) )
Xin phép thủ công :"))
\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=1008\)
\(\Leftrightarrow\frac{\left(b-c\right)\left(c-a\right)+\left(a-b\right)\left(c-a\right)+\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1008\)
\(\Leftrightarrow\frac{bc-c^2-ab+ac+ac-bc-a^2+ab+ab-b^2-ac+bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1008\)
\(\Leftrightarrow-\frac{a^2+b^2+c^2-ab-ac-bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1008\)
\(A=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{\left(c-b\right)\left(b-c\right)+\left(a-c\right)\left(c-a\right)+\left(b-a\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{bc-b^2-c^2+bc+ac-c^2-a^2+ac+ab-a^2-b^2+ab}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{-2\left(a^2+b^2+c^2-ab-ac-bc\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=2.1008=2016\)
Từ gt , ta có :
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
\(\Rightarrow0=\left(a+b\right)\left(ca+cb+c^2\right)-\left[-\left(a+b\right)ab\right]=\left(a+b\right)\left(ca+cb+c^2+ab\right)=\left(a+b\right)\left(c+a\right)\left(c+b\right)\)
\(\Rightarrow a+b=0\) hoặc \(c+a=0\) . Gỉa sử \(a=-b\) thì \(a^{15}=-b^{15}\) nên \(a^{15}+b^{15}=0\)
\(\Rightarrow N=0\)