Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)
Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)
Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*
Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)
Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)
Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))
\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)
\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2
Nguyễn Thị Ngọc Thơ, Nguyễn Việt Lâm, @No choice teen, @Trần Thanh Phương, @Akai Haruma
giúp e vs ạ! Cần gấp!
thanks nhiều!
Cho \(x^2+y^2=1\).Tìm min max \(\sqrt{3}xy+y^2\)
Cho \(a^2+b^2\le2\left(a+b\right)\) Tìm min max 2a+b
Vì vai trò bình đẳng của các ẩn \(a,b,c\) là như nhau nên không mất tính tổng quát, ta có thể giả sử:
\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do \(a,b,c\) đôi một khác nhau nên cũng không đồng thời bằng nhau)
Áp dụng bđt \(AM-GM\) cho từng bộ số gồm có các số không âm, ta có:
\(\left(i\right)\) Với \(\frac{1}{\left(a-b\right)^2}>0;\) \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\) \(\left(1\right)\)
\(\left(ii\right)\) Với \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)
\(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\) \(\left(2\right)\)
\(\left(iii\right)\) Với \(\frac{1}{\left(c-a\right)^2}>0;\) \(\frac{c-a}{16}>0\)
\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)
\(\Rightarrow\) \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\) \(\left(3\right)\)
Cộng từng vế ba bất đẳng thức \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) , ta được:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)
nên \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)
Mặt khác, từ \(\left(\alpha\right)\) ta suy ra được: \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)
nên \(a+2\ge c\) hay nói cách khác \(a-c\ge-2\)
Do đó, \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}a=0\\b=1\\c=2\end{cases}}\) (thỏa mãn \(\left(\alpha\right)\) )
Vì vai trò bình đẳng của các ẩn \(a,b,c\) là như nhau nên không mất tính tổng quát, ta có thể giả sử:
\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do \(a,b,c\) đôi một khác nhau nên cũng không đồng thời bằng nhau)
Áp dụng bđt \(AM-GM\) cho từng bộ số gồm có các số không âm, ta có:
\(\left(i\right)\) Với \(\frac{1}{\left(a-b\right)^2}>0;\) \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\) \(\left(1\right)\)
\(\left(ii\right)\) Với \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)
\(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)
\(\Rightarrow\) \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\) \(\left(2\right)\)
\(\left(iii\right)\) Với \(\frac{1}{\left(c-a\right)^2}>0;\) \(\frac{c-a}{16}>0\)
\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)
\(\Rightarrow\) \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\) \(\left(3\right)\)
Cộng từng vế ba bất đẳng thức \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) , ta được:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)
nên \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)
Mặt khác, từ \(\left(\alpha\right)\) ta suy ra được: \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)
nên \(a+2\ge c\) hay nói cách khác \(a-c\ge-2\)
Do đó, \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=0;b=1;c=2\) (thỏa mãn \(\left(\alpha\right)\) )
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên ta cần CM \(a^2+b^2+c^2+ab+bc+ac\ge a^3+b^3+c^3\)
Theo đề bài ta có
\(a\left(a-1\right)\left(a-2\right)\le0\)=> \(a^3\le3a^2-2a\)
Tương tự với b,c => \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\left(a-2\right)\left(b-2\right)\ge0\)=> \(ab\ge2\left(a+b\right)-4\)
Tương tự => \(ab+bc+ac\ge4\left(a+b+c\right)-12\)
Khi đó BĐT <=>
\(a^2+b^2+c^2+4\left(a+b+c\right)-12\ge3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
<=> \(3\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)-6\)
<=>\(\left(a-1\right)\left(a-2\right)+\left(b-1\right)\left(b-2\right)+\left(c-1\right)\left(c-2\right)\le0\)(luôn đúng với giả thiết)
Dấu bằng xảy ra khi \(\left(a,b,c\right)=\left(2;2;2\right),\left(2;2;1\right),....\)và các hoán vị
Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Nên \(BĐT\Leftrightarrow a^2+b^2+c^2+ab+bc+ca\ge a^3+b^3+c^3\)
Ta có \(a\left(a-2\right)\left(a-1\right)\le0\Leftrightarrow a^3\le3a^2-2a\)
Tương ta ta có: \(b^3\le3b^2-2b;c^3\le3c^2-2c\)
Cộng từng vế của các bđt trên: \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3\le a^2+b^2+c^2+ab+bc+ca\)
\(+2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Đặt \(\)\(K=2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)
Ta lại có
\(\left(a-1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le3a-2\)
Tương tự \(b^2\le3b-2;c^2\le3c-2\)
\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)-6\)(1)
\(\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab\ge2a+2b-4\)
Tương tự \(bc\ge2b+2c-4;ca\ge2c+2a-4\)
\(\Rightarrow ab+bc+ca\ge4\left(a+b+c\right)-12\)(2)
Từ (1) và (2) suy ra \(K\le6\left(a+b+c\right)-12-2\left(a+b+c\right)\)
\(-\left[4\left(a+b+c\right)-12\right]=0\)
\(K\le0\Rightarrow a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)
\(\le a^2+b^2+c^2+ab+bc+ca\)
hay \(\text{Σ}_{cyc}a^2+\text{Σ}_{cyc}ab+3\text{Σ}_{cyc}\left(a+b\right)\ge\left(a+b+c\right)^3\)
Đẳng thức xảy ra khi \(\left(a,b,c\right)\in\left(2;2;1\right)\)và các hoán vị hoặc \(a=b=c=2\)
2a) Có cách này nhưng ko chắc!
\(A\ge\frac{4x^2}{y^2+z^2}+\frac{y^2+z^2}{x^2}=\frac{3x^2}{y^2+z^2}+\left(\frac{x^2}{y^2+z^2}+\frac{y^2+z^2}{x^2}\right)\)
\(\ge\frac{3\left(y^2+z^2\right)}{y^2+z^2}+2\sqrt{\frac{x^2}{y^2+z^2}.\frac{y^2+z^2}{x^2}}=3+2=5\)
Đẳng thức xảy ra khi x2 = y2 + z2????
tth, ?Amanda?, @Nk>↑@, buithianhtho, Phạm Hoàng Lê Nguyên,
Akai Haruma, Aki Tsuki, @Nguyễn Việt Lâm, @Trần Thanh Phương
Giúp mk vs!