Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4};...;\frac{a_{2015}}{a_{2016}}=\frac{a_{2016}}{a_{2017}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2016}}{a_{2017}}=k\)
\(\Rightarrow\frac{a_1^{2016}}{a_2^{2016}}=\frac{a_2^{2016}}{a_3^{2016}}=...=\frac{a_{2016}^{2016}}{a_{2017}^{2016}}=\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=k^{2016}\left(1\right)\)
Ta lại có:
\(k^{2016}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2016}}{a_{2017}}=\frac{a_1}{a_{2017}}\left(2\right)\)
Từ (1) và (2) \(\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=\frac{a_1}{a_{2017}}\)
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2015}}{a_{2016}}=\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\)
=> \(\left(\frac{a_1}{a_2}\right)^{2015}=\left(\frac{a_2}{a_3}\right)^{2015}=...=\left(\frac{a_{2015}}{a_{2016}}\right)^{2015}=\left(\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\right)^{2015}=\frac{a_1.a_2...a_{2015}}{a_2.a_3...a_{2016}}=\frac{a_1}{a_{2016}}\)
=> \(\left(\frac{a_1+a_2+...+a_{2015}}{a_2+a_3+...+a_{2016}}\right)^{2015}=\frac{a_1}{a_{2016}}\)(Đpcm)
Ta có
\(\frac{a_1}{a_2}+\frac{a_2}{a_3}+...+\frac{a_{2008}}{a_1}=\frac{a_1+...+a_{12}+...+a_{2008}}{a_2+a_3+...+a_1}=1\)
Từ đó a1 = a2 = a3 = ... = a2008
\(\Rightarrow N=\frac{a^2_1+a^2_2+...+a_{2008}^2}{\left(a_1+a_2+...+a_{2008}\right)^2}=\frac{2008a^2_1}{\left(2008a_1\right)^2}=\frac{1}{2008}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+a_3+...+a_{2012}}{a_1+a_2+a_3+...+a_{2012}}=1\)(Vì \(a_1+a_2+a_3+...+a_{2012}\ne0\))
Khi đó \(a_1=a_2=a_3=...=a_{2012}\)
=> \(M=\frac{a_1^{2012}+a_2^{2012}+...+a_{2012}^{2012}}{\left(a_1+a_2+...+a_{2012}\right)^{2012}}=\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{1}{2012^{2011}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+...+a_{2012}}{a_2+a_3+...+a_1}=1\)
\(\Rightarrow a_1=a_2=a_3=...=a_{2012}\)
Khi đó M = \(\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{2012.a_1^{2012}}{2012^{2012}.a_1^{2012}}=\frac{2012}{2012^{2012}}=\frac{1}{2012^{2011}}\)
Ta có : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)
Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)
\(\Rightarrow\frac{a_1}{a_2}=-5\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+....+a_{2017}}{a_2+a_3+a_4+.....+a_{2018}}\) (2)
Từ (1) và (2)
=> S = -5
Theo t/c của dãy tỉ số bằng nhau ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2013}}{a_{2014}}=\frac{a_{2014}}{a_1}=\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2014}+a_1}=1\)
=> Đặt \(a_1=a_2=a_3=...=a_{2014}=k\)
=> M = \(\frac{k^2+k^2+...+k^2}{ \left(k+k+...+k\right)^2}=\frac{2014k^2}{\left(2014.k\right)^2}=\frac{2014.k^2}{2014^2.k^2}=\frac{1}{2014}\)
\(\text{Theo tính chất dãy tỉ số bằng nhau , ta có :}\)
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2013}}{a_{2014}}=\frac{a_{2014}}{a_1}=\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2014}+a_1}=1\)
\(\Rightarrow\text{Đặt }a_1=a_2=a_3=...=a_{2014}=k\)
\(\Rightarrow\text{ M = }\frac{k^2+k^2+...+k^2}{\left(k+k+...+k\right)^2}=\frac{2014k^2}{\left(2014.k\right)^2}=\frac{2014.k^2}{2014^2.k^2}=\frac{1}{2014}\)
\(\text{Vậy M =}\frac{1}{2014}\)
\(\text{~~Học tốt~~}\)