Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3+b3+c3=(a+b+c)3-3(a+b)(a+c)(b+c)
Vì a3+b3+c3 \(⋮\)6 nên [(a+b+c)3-3(a+b)(a+c)(b+c)] \(⋮\)6
Mà trong 3(a+b)(a+c)(b+c) luôn có ít nhất 1 số chẵn ( xét các trường hợp a,b,c lần lượt là : lẻ, lẻ, lẻ; chẵn,chẵn, chẵn; chẵn, lẻ, lẻ; chẵn, chẵn, lẻ;chẵn lẻ chẵn; lẻ chẵn lẻ; lẻ chẵn chẵn; lẻ lẻ chẵn..[tìm thêm ])
nên 3(a+b)(a+c)(b+c)\(⋮\)6
=> (a+b+c)3 phải chia hết cho 6
Lại có a,b,c là các số tự nhiên nên suy ra a+b+c phải chia hết cho 6.
a3+b3+c3=(a+b+c)(a^2+b^2+c^2−ab−bc−ac)+3abc
a^3+b^3+c^3=(a+b+c)(a^2+b2+c^2−ab−bc−ac)+3abc
=(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc=(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc
=(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc=(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc
*Nếu a+b+c⋮3⇒a3+b3+c3⋮3a+b+c⋮3⇒a3+b3+c3⋮3
*Nếu a3+b3+c3⋮3⇒(a+b+c)[(a+b+c)2−3(ab+bc+ca)]⋮3
⇒a+b+c⋮3a3+b3+c3⋮3
⇒(a+b+c)[(a+b+c)2−3(ab+bc+ca)]⋮3
⇒a+b+c⋮3
=>đpcm
Mk nhác ghi mũ lắm thông cảm nha Vd; a2=a^2
Xét \(\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)\)
Ta có \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮6\)(vì tích của 3 số nguyên/số tự nhiên liên tiếp)
Tương tự ta có \(\left(b^3-b\right)⋮6;\left(c^3-c\right)⋮6;\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(d^3-d\right)⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3+d^3\right)-\left(a+b+c+d\right)⋮6\)
Mà \(a+b+c+d⋮6\Rightarrow a^3+b^3+c^3+d^3⋮6\left(ĐPCM\right)\)
P/S: bt làm có bài này thôi :v
Xét hiệu: A=a3+b3+c3-a-b-c = (a3-a)+(b3-b)+(c3-c)
=a(a-1)(a+1) + b(b-1)(b+1) + c(c-1)(c+1)
Tích của 3 số nguyên liên tiếp luôn ⋮ 6 vì trong 3 số đó có 1 số chia hết cho 2 ; một số chia hết cho 3 (Điều hiển nhiên)
⇒ A ⋮ 6
Vậy nếu a3+b3+c3 chia hết cho 6 thì a+b+c chia hết cho 6 và ngược lại.(ĐPCM)