K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2020

Áp dụng bất đẳng thức cô si vào 3 số a,b,c không âm ta có:

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

\(\Rightarrow2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(\Rightarrow2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)( dpcm )

22 tháng 4 2016

Mình học lớp 7 nên chỉ làm được phần b, thôi

b, * Nếu x=1 thì: 

1+1=2

* Nếu x=2 thì:

2+ 1/2 >2

* Nếu x>2 

=> x + 1/x   >   2 ( vì 1/x là số dương )

Vậy x + 1/x >=2 (x>0)

22 tháng 4 2016

Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html

14 tháng 6 2017

Do abc=0 nên 1 trong a,b,c=0 .Giả sử a=0 ,khi ấy ta có:

ab+bc+ac=0+bc+0 =1 nên suy ra bc=1 do đó c,b thuộc(1;1)(-1;-1);

mà a+b+c=2 nên b+c=2,mà b,c khác 0 nên b,c thuộc(1;1);

Vậy a=0,b=1,c=1(DPCM)  

CHÚC BẠN HỌC TỐT

16 tháng 9 2016

b) Ta có : a\(^2\)+ b\(^2\)+ c\(^2\) =ab+bc+ca

=> 2(a\(^2\)+b\(^2\)+c\(^2\))= 2(ab+bc+ca)

<=>2a\(^2\)+2b\(^2\)+2c\(^2\)=2ab+2bc+2ca

<=> 2a\(^2\)+2b\(^2\)+2c\(^2\)-2ab-2bc-2ca=0

<=> a\(^2\)+a\(^2\)+b\(^2\)+b\(^2\)+c\(^2\)+c\(^2\)-2ab-2bc=2ca=0

<=> (a\(^2\)-2ab+b\(^2\))+(b\(^2\)-2bc+b\(^2\))+(a\(^2\)-2ca+c\(^2\))

<=> (a-b)\(^2\)+(b-c)\(^2\)+(a-c)\(^2\) =a

<=> hoặc a-b=0 hoặc b-c=o hoặc a-c=o <=>a=b hoặc b=c hoặc a=c

=>a=b=c (đpcm)

16 tháng 9 2016

a) Theo đề bài: \(a^2+b^2=ab\)

=>\(a^2+b^2-ab=0\)

=>\(a^2-2ab+b^2+ab=0\)

=>\(\left(a-b\right)^2+ab=0\)

Vì \(\left(a-b\right)^2\ge0\)  để \(\left(a-b\right)^2+ab=0\) <=> \(\left(a-b\right)^2=ab=0\)

(a-b)2=0 <=> a-b=0 <=> a=b (đpcm)

b)\(a^2+b^2+c^2=ab+bc+ca\)

=>\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

=>\(2a^2+2b^2+2c^2=2ab+2bc+2ac\)

=>\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Vì \(\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(a-c\right)^2\ge0\end{cases}\) để \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

<=>\(\left(a-b\right)^2=\left(b-c\right)^2=\left(a-c\right)^2=0\)

<=>a-b=b-c=a-c=0

<=>a=b=c (đpcm)

9 tháng 6 2017

sr tui ko có câu hỏi tương tự tui chỉ có câu hỏi y hệt thôi Xem câu hỏi