K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Lời giải:

Phản chứng. Giả sử PT đã cho không có nghiệm nào với mọi số thực $a,b,c$.

Điều này tương đương với các PT con

\((1):ax^2+2bx+c=0; (2):bx^2+2cx+a=0;(3): cx^2+2ax+b=0\)không có nghiệm với mọi $a,b,c\in\mathbb{R}$
\(\Rightarrow \left\{\begin{matrix} \Delta'_1=b^2-ac< 0\\ \Delta'_2=c^2-ab< 0\\ \Delta'_3=a^2-bc< 0\end{matrix}\right.\)

\(\Rightarrow b^2-ac+c^2-ab+a^2-bc< 0\)

\(\Leftrightarrow 2b^2-2ac+2c^2-2ab+2a^2-2bc< 0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2< 0\) (vô lý với mọi $a,b,c$ thực)

Vậy điều giả sử là sai. Nghĩa là pt đã cho luôn có nghiệm với mọi $a,b,c\in\mathbb{R}$

10 tháng 6 2021

giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)

\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)

\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)

Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)

\(\Rightarrow17a+3b+c=6a+b=0\)

\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)

Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)

pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)

5 tháng 2 2022

a) Xét phương trình thứ nhất, có \(\Delta_1=b^2-4ac\)

Xét phương trình thứ hai, có \(\Delta_2=b^2-4ca=b^2-4ac\)

Từ đó ta có \(\Delta_1=\Delta_2\), do đó, khi phương trình (1) có nghiệm \(\left(\Delta_1\ge0\right)\)thì \(\Delta_2\ge0\)dẫn đến phương trình (2) cũng có nghiệm và ngược lại.

Vậy 2 phương trình đã cho cùng có nghiệm hoặc cùng vô nghiệm.

b) Vì \(x_1,x_2\)là 2 nghiệm của phương trình (1) nên theo định lý Vi-ét, ta có \(x_1x_2=\frac{c}{a}\)

Tương tự, ta có \(x_1'x_2'=\frac{a}{c}\)

Từ đó \(x_1x_2+x_1'x_2'=\frac{c}{a}+\frac{a}{c}\)

Nếu \(\hept{\begin{cases}a>0\\c>0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c< 0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}>0\\\frac{a}{c}>0\end{cases}}\), khi đó có thể áp dụng bất đẳ thức Cô-si cho 2 số dương \(\frac{c}{a}\)và \(\frac{a}{c}\):

\(\frac{c}{a}+\frac{a}{c}\ge2\sqrt{\frac{c}{a}.\frac{a}{c}}=2\), dẫn đến \(x_1x_2+x_1'x_2'\ge2\)

Nhưng nếu \(\hept{\begin{cases}a>0\\c< 0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c>0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}< 0\\\frac{a}{c}< 0\end{cases}}\),như vậy \(\frac{c}{a}+\frac{a}{c}< 0< 2\)dẫn đến \(x_1x_2+x_1'x_2'< 2\)

Như vậy không phải trong mọi trường hợp thì \(x_1x_2+x_1'x_2'>2\)

13 tháng 6 2018

Ta có: \(\Delta=b^2-4ac\)

Lại có: \(\left(a+c\right)^2< ab+bc-2ac\)

\(\Rightarrow-2ac>b\left(a+c\right)+\left(a+c\right)^2\)

\(\Rightarrow\Delta=b^2-4ac>b^2+2b\left(a+c\right)+2\left(a+c\right)^2\)

\(\Rightarrow\Delta>\left(a+b+c\right)^2+\left(a+c\right)^2>0\)

Suy ra phương trình \(ax^2+bx+c\) luôn có nghiệm