Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{xyz+xz+z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)(do \(xyz=1\))
\(=\frac{xz}{xz+z+1}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)(do \(xyz=1\))
\(=\frac{xz+z+1}{xz+z+1}=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,\(A=\frac{6x+12}{\left(x+2\right)\left(2x-6\right)}=\frac{6\left(x+2\right)}{2\left(x+2\right)\left(x-3\right)}=\frac{3}{x-3}\)
b, Giá trị của x để phân thức có giá trị bằng (-2) :
\(\frac{3}{x-3}=-2\Rightarrow x=1,5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{x}{x-1}-\frac{x+1}{x}\right):\left(\frac{x}{x+1}-\frac{x-1}{x}\right)\)
\(=\left(\frac{x^2-\left(x-1\right)\left(x+1\right)}{\left(x-1\right).x}\right):\left(\frac{x^2-\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}\right)\)
\(=\frac{x^2-\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)}.\frac{x\left(x+1\right)}{x^2-\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+1}{x-1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) MTC : \(\left(x+1\right)\left(x^2-x+1\right)\)
Quy đồng :
\(\frac{x-1}{x^3+1}=\frac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2x}{x^2-x+1}=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2}{x+1}=\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
b ) MTC : \(10x\left(2y-x\right)\left(2y+x\right)\)
\(\frac{7}{5x}=\frac{7.2.\left(2y-x\right)\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=\frac{-4.10x.\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}=\frac{-40x\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
c ) MTC : \(\left(x+2\right)^3\)
\(\frac{6x^2}{x^3+6x^2+12x+8}=\frac{6x^2}{\left(x+2\right)^3}\)
\(\frac{3x}{x^2+4x+4}=\frac{3x}{\left(x+2\right)^2}=\frac{3x\left(x+2\right)}{\left(x+2\right)^3}\)
\(\frac{2}{2x+4}=\frac{1}{x+2}=\frac{\left(x+2\right)^2}{\left(x+2\right)^3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bn đăng bài lên xong nói mình làm được r thế đăng lên làm gì vậy bạn?
Lời giải:
$P+Q=x+\frac{1}{x}+x-\frac{1}{x}=2x$
$P-Q=x+\frac{1}{x}-x+\frac{1}{x}=\frac{2}{x}$
$PQ=(x+\frac{1}{x})(x-\frac{1}{x})=x^2-\frac{1}{x^2}$
$P:Q=(x+\frac{1}{x}): (x-\frac{1}{x})=\frac{x^2+1}{x}: \frac{x^2-1}{x}=\frac{x^2+1}{x^2-1}$