Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm:
\(\left(m-1\right)x-m^2-2m=\left(m-2\right)x-m^2-m+1\)
\(\Leftrightarrow x=m+1\)
\(\Rightarrow y=\left(m-1\right)\left(m+1\right)-m^2-2m=-2m-1\)
\(\Rightarrow Q\left(m+1;-2m-1\right)\)
Mà \(2x_Q+y_Q=2m+2-2m-1=1\) \(\forall m\)
\(\Leftrightarrow y_Q=-2x_Q+1\) \(\forall m\)
\(\Rightarrow Q\) luôn thuộc đường thẳng cố định \(y=-2x+1\)
a/ Để hàm số này là hàm bậc nhất thì
\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)
Các câu còn lại làm tương tự nhé bạn
a/ Gọi điểm cố định là N(x0;y0)
Suy ra N thuộc đồ thị hàm số y = (m-2)x+3 nên :
\(y_0=\left(m-2\right)x_0+3\Leftrightarrow mx_0-\left(2x_0+y_0-3\right)=0\)
Vì đths luôn đi qua N với mọi x,y nên :
\(\begin{cases}x_0=0\\2x_0+y_0-3=0\end{cases}\) \(\Leftrightarrow\begin{cases}x_0=0\\y_0=3\end{cases}\)
Vậy điểm cố định là \(N\left(0;3\right)\)
b,c tương tự
GIẢI HỆ CỦA d1,d2 tìm tọa độ giao điểm giả sử gọi là A
\(\hept{\begin{cases}x-2y=-6\\2x+y=8\end{cases}}\Rightarrow\hept{\begin{cases}2x-4y=-12\\2x+y=8\end{cases}}\Rightarrow5y=20\Rightarrow y=4\Rightarrow x=2y-6=2.4-6=2\)
toạn độ A(2,4) Thay vào phương trinh d có
\(VT=\left(m+2\right)2-\left(2m-1\right)4+6m-8\)
\(=2m+4-8m+4+6m-8\)
\(=8m-8m+8-8=0=VP\forall m\)
vậy đường thẳng d luôn đi qua giao điểm A với mọi m
Để d1 // d2 khi \(\hept{\begin{cases}m^2-1=5-m\\m+2\ne2m+5\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2+m-6=0\\m\ne-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=2;m=-3\\m\ne-3\end{cases}}\Leftrightarrow m=2\)