K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

Ta có :

\(A+B=2x^2yz+xy^2z\)

\(=xyz\left(2x+y\right)\)

Vì \(2x+y⋮m\) nên \(xyz\left(2x+y\right)⋮m\)

Do đó : \(A+B⋮m\) (đpcm)

23 tháng 8 2017

Bài làm

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

9 tháng 6 2015

ta có x=a/m = 2a/2m ; y= b/m= 2b/2m ; z= (a+b)/2m
lại có x<y <=> a<b (do m>0)
<=> a+a < a+b < b + b 
<=> 2a < a+b < 2b 
<=> 2a/2m <(a+b)/2m <2b/2m
<=> x<z<y

9 tháng 6 2015

 x =a/m =>. x = 2a/2m 
y =b/m => y = 2b/2m 
z = (a+b)/2m 
theo giả thiết a < b => a + b < b + b => a + b < 2b ........(1) 
Ngòa i ra, a < b => a + a < a + b => 2a < a + b ........(2) 
Suy ra: 
2a < a +b < 2b 
Suy ra (chia 2 vế cho 2m) : 
2a/2m < (a +b)/2m < 2b 
R út gọn ta được : x < z <y

30 tháng 5 2016

Ta có:x<y

=>x+x<y+x

\(\Rightarrow\frac{2a}{m}< \frac{a+b}{m}\)

=>2a<a+b

Mà \(x=\frac{a}{m}=\frac{2a}{2m}\)

\(y=\frac{b}{m}=\frac{2b}{2m}\)

Theo giả thuyết trên:

=>2a<a+b<2b

\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)

\(\Rightarrow x< z< y\left(DPCM\right)\)

26 tháng 8 2016

1) Với a, b ∈ Z, b> 0

- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0

- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0

Tổng quát: Số hữu tỉ  \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0

26 tháng 8 2016

Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y

21 tháng 8 2019

\(x< y\Leftrightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow\frac{a}{2m}< \frac{b}{2m}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{2a}{2m}< \frac{a+b}{2m}\\\frac{a+b}{2m}< \frac{2b}{2m}\end{cases}}\)\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)

\(\Rightarrow x< z< y\)

22 tháng 8 2019

 Bạn ơi bạn Bùi Huyền ở trên kia làm đúng rồi nhé. Hôm nay mình làm cô giáo kiểm tra đúng rồi chắc chắn 100% luôn nhé nên không phải lo đâu

Hok tốt bn

16 tháng 8 2016

x<y suy ra a/m<b/m suy ra a<b (vì m<0)

mà a<b suy ra a+b < b+b

suy ra a+b<2b

suy ra a+b/2 <b

suy ra a+b/2m <b/m

suy ra a+b/2m< y

Suy ra z<y   (1)

Mặt khác a<b suy ra a+a <a+b

suy ra 2a <a+b

suy ra 2a/m <a+b/ m

suy ra a/m < a+b/2m

suy ra x<z    (2)

Từ (1) và (2)

suy ra x<z<y

\(\frac{a}{m}<\frac{b}{m}\Rightarrow a\)<b

\(\Rightarrow x=\frac{2a}{2m};y=\frac{2b}{2m}\)

2a<a+b<2b \(\Rightarrow x=\frac{2a}{2m}\)<\(z=\frac{a+b}{2m}\)<\(y=\frac{2b}{2m}\)

=>đpcm