Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn:
\(P\left(x\right)=2x^2+4x\)
\(Q\left(x\right)=-x^3+2x^2-x+2\)
Để \(R\left(x\right)-P\left(x\right)-Q\left(x\right)=0\)
<=> \(R\left(x\right)=P\left(x\right)+Q\left(x\right)\)
= \(\left(2x^2+4x\right)+\left(-x^3+2x^2-x+2\right)\)
= \(-x^3+4x^2+3x+2\)
KL: \(R\left(x\right)=-x^3+4x^2+3x+2\)
a) \(P\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(P\left(x\right)=\left(2x^3+x^2-3x-4\right)-\left(-x^3+3x^2+5x-1\right)\)
\(P\left(x\right)=2x^3+x^2-3x-4+x^3-3x^2-5x+1\)
\(P\left(x\right)=2x^3+x^3+x^2-3x^2-3x-5x-4+1\)
\(P\left(x\right)=3x^3-2x^2-8x-3\)
b) \(R\left(x\right)=f\left(x\right)-h\left(x\right)\)
\(R\left(x\right)=\left(2x^3+x^2-3x-4\right)-\left(-3x^3+2x^2-x-3\right)\)
\(R\left(x\right)=2x^3+x^2-3x-4+3x^3-2x^2+x+3\)
\(R\left(x\right)=2x^3+3x^3+x^2-2x^2-3x+x-4+3\)
\(R\left(x\right)=5x^3-x^2-2x-1\)
c) Mình chưa học ạ nên không biết làm.
a)P(x)=(2x3+x2-3x-4) - (-x3+3x2+5x-1)
= 2x3+x2-3x-4 - x3-3x2-5x+1
= (2x3-x3)+(x2-3x2) +(-3x-5x)+(-4+1)
= x3-2x2-8x-3
b) R(x)=(2x3+x2-3x-4) - (-3x3+2x2-x-3)
= 2x3+x2-3x-4 - 3x3-2x2+x+3
=(2x3-3x3)+(x2-2x2)+(-3x+x)+(-4+3)
= -x3-x2-2x-1
a. * A(x) = \(-2x^2+3x-4x^3+\dfrac{3}{5}-5x^4\)
A(x)= \(-5x^4-4x^3-2x^2+3x+\dfrac{3}{5}\)
*B(x) = \(3x^4+\dfrac{1}{5}-7x^2+5x^3-9x\)
B(x)= \(3x^4+5x^3-7x^2-9x+\dfrac{1}{5}\)
A(x) +B(x) = \(-5x^4-4x^3-2x^2+3x+\dfrac{3}{5}+3x^4+5x^3-7x^2-9x+\dfrac{1}{5}\)
\(-\left(5x^4-3x^4\right)-\left(4x^3-5x^3\right)-\left(2x^2+7x^2\right)+\left(3x-9x\right)+\left(\dfrac{3}{5}+\dfrac{1}{5}\right)\)
\(=-2x^4+x^3-9x^2-6x+\dfrac{4}{5}\)
B(x)-A(x)=\(\left(3x^4+5x^3-7x^2-9x+\dfrac{1}{5}\right)-\left(5x^4-4x^3-2x^2+3x+\dfrac{3}{5}\right)\)
\(3x^4+5x^3-7x^2-9x+\dfrac{1}{5}-5x^4+4x^3+2x^2-3x-\dfrac{3}{5}\)
\(\left(3x^4-5x^4\right)+\left(5x^3+4x^3\right)-\left(7x^2-2x^2\right)-\left(9x+3x\right)+\left(\dfrac{1}{5}-\dfrac{3}{5}\right)\)
\(-2x^4+9x^3-5x^2-12x+\dfrac{2}{5}\)
Đúng 100% nha.Bạn Thanh bạn ấy tính nhầm và àm nhầm nên kq mới như vậy
Cho 2 đa thức sau: A(x)=-2x2+3x-4x3+\(\dfrac{3}{5}\)-5x4
B(x)=3x4+\(\dfrac{1}{5}\)-7x2+5x3-9x
a.sắp xếp các đa thức sau theo lũy thừa giảm dần của biến.
A(x)= -5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\)
B(x)= 3x4 +5x3 -7x2 -9x+ \(\dfrac{1}{5}\)
b. A(x)+B(x)=(-5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\))+ (3x4 +5x3 -7x2 -9x+\(\dfrac{1}{5}\) ) =-5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\)+3x4 +5x3 -7x2 -9x +\(\dfrac{1}{5}\)
= (-5x4 +3x4 )+(-4x3 +5x3) +(-2x2 -7x2)+(3x-9x)+(\(\dfrac{3}{5}\)+\(\dfrac{1}{5}\))
= -2x4 +x3 -8x2 -6x+\(\dfrac{4}{5}\)
A(x)-B(x)=(-5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\))-(3x4 +5x3 -7x2 -9x+\(\dfrac{1}{5}\) )
=-5x4 -4x3 -2x2 +3x+\(\dfrac{3}{5}\)-3x4 -5x3 +7x2 +9x-\(\dfrac{1}{5}\)
=(-5x4 -3x4 )+(-4x3-5x3) +(-2x2 +7x2)+(3x+9x)+(\(\dfrac{3}{5}\)-\(\dfrac{1}{5}\))
=-8x4-9x2+5x2+12x+\(\dfrac{2}{5}\)
CHÚC BN HỌC TỐT
Câu 1:
a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)
\(P\left(0\right)=0\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
a,R(x)=P(x)+Q(x)=-4x\(^4\)-2x+x\(^2\)+3x\(^3\)+1-2-3x\(^3\)+2x+x\(^5\)+5x\(^4\)
=x\(^5\)+(-4x\(^4\)+5x\(^4\))+(3x\(^3\)-3x\(^3\))+x\(^2\)+(-2x+2x)+(1-2)
=x\(^5\)+x\(^4\)+x\(^2\)-1
R(-1)=(-1)\(^5\)+(-1)\(^4\)+(-1)\(^2\)-1
=0
\(P\left(x\right)-Q\left(x\right)=\left(-2x+\frac{1}{2}x^2+3x^4-3x^2-3\right)-\left(3x^4+x^3-4x^2+1,5x^3-3x^4+2x+1\right)\\ P\left(x\right)-Q\left(x\right)=-2x+\frac{1}{2}x^2+3x^4-3x^2-3-3x^4-x^3+4x^2-1,5x^3+3x^4-2x-1\\ P\left(x\right)-Q\left(x\right)=\left(-2x-2x\right)+\left(\frac{1}{2}x^2-3x^2+4x^2\right)+\left(3x^4-3x^4+3x^4\right)+\left(-3-1\right)+\left(-x^3-1,5x^3\right)\\ P\left(x\right)-Q\left(x\right)=-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3\)
\(R\left(x\right)+P\left(x\right)-Q\left(x\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)+\left(P\left(x\right)-Q\left(x\right)\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\left(\frac{3}{2}x+x^2\right)+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{5}{2}x^2+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)=2x^3-\frac{3}{2}x+1+4x-\frac{5}{2}x^2-3x^4+4+\frac{5}{2}x^3\\ \Rightarrow R\left(x\right)=\left(2x^3+\frac{5}{2}x^3\right)+\left(\frac{-3}{2}x+4x\right)+\left(1+4\right)-\frac{5}{2}x^2-3x^4\\ \Rightarrow R\left(x\right)=\frac{9}{2}x^3+\frac{5}{2}x+5-\frac{5}{2}x^2-3x^4\)
a) \(H\left(x\right)=3x^2+2x+2012=3\left(x^2+\frac{2}{3}x+\frac{2012}{3}\right)\)
\(=3\left(x^2+2.x.\frac{1}{3}+\frac{1}{9}-\frac{1}{9}+\frac{2012}{3}\right)\)
\(=3\left[\left(x+\frac{1}{3}\right)^2+\frac{6035}{9}\right]=3\left(x+\frac{1}{3}\right)^2+\frac{6035}{3}\ge\frac{6035}{3}>0\forall x\)
Vậy đa thức vô nghiệm
b) \(D\left(x\right)=x^2+4x+4=0\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Nghiệm của đa thức là -2
c)\(F\left(x\right)=x^3-2x^2-2x+4=0\)
\(\Leftrightarrow x^2\left(x-2\right)-2\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x^2-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x^2-2=0\left(1\right)\end{cases}}\).Xét đa thức (1): \(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Vậy...
thứ tự pt (1);(2);(3)
(1) trừ (2) cộng (3) <=> 2P(x) =2x^2 -6x +12
=> P(x) =x^2 -3x +6 (4)
(1) trừ (4)=> Q(x) =2x^2 +x-3
(3) trừ (4)=> R(x) = x^2 +2x-8
b)
(4) <=>P(x) = (x-3/2)^2 +3/4 >=3/4 > 0 => P(X) vô nghiệm
bn giải cụ thể hơn ko mình khó hiểu wá