Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy (x,y,z) phải khác 0
Ta nhân các vế của các giả thiết với nhau : \(\left(xyz\right)^2=\frac{2.3.9}{5.7.13}=\frac{54}{455}\)
\(\Rightarrow x^2=\frac{54}{455}:\left(yz\right)^2=\frac{54}{455}:\frac{9}{49}=\frac{42}{65}\Rightarrow x=\pm\sqrt{\frac{42}{65}}\)
\(\Rightarrow y=\frac{2}{5}:x=\frac{2}{5}:\left(\pm\sqrt{\frac{42}{65}}\right)\)
Từ xz = 9/13 => z
=> xy.yz.xz= \(\frac{2}{5}.\frac{3}{7}.\frac{9}{13}\)
\(\Rightarrow\left(x.y.z\right)^2=\frac{54}{455}\)
Ủa! Sao ko lm được
a)
\(P\left(x\right)=6x^4+2x+4x^3-3x^2-10+x^3+3x\)
\(=6x^4+\left(4x^3+x^3\right)-3x^2+\left(2x+3x\right)-10\)
\(=6x^4+5x^3-3x^2+5x-10\)
\(Q\left(x\right)=4-5x^3+2x^2-x^3+5x^4+11x^3-4x\)
\(=5x^4+\left(-5x^3-x^3+11x^3\right)+2x^2-4x+4\)
\(=5x^4+5x^3+2x^2-4x+4\)
b)
\(P\left(x\right)+Q\left(x\right)\)
\(=\left(6x^4+5x^3-3x^2+5x-10\right)+\left(5x^4+5x^3+2x^2-4x+4\right)\)
\(=6x^4+5x^3-3x^2+5x-10+5x^4+5x^3+2x^2-4x+4\)
\(=\left(6x^4+5x^4\right)+\left(5x^3+5x^3\right)+\left(-3x^2+2x^2\right)+\left(5x-4x\right)+\left(-10+4\right)\)
\(=11x^4+10x^3-x^2+x-6\)
\(P\left(x\right)-Q\left(x\right)\)
\(=\left(6x^4+5x^3-3x^2+5x-10\right)-\left(5x^4+5x^3+2x^2-4x+4\right)\)
\(=6x^4+5x^3-3x^2+5x-10-5x^4-5x^3-2x^2+4x-4\)
\(=\left(6x^4-5x^4\right)+\left(5x^3-5x^3\right)+\left(-3x^2-2x^2\right)+\left(5x+4x\right)+\left(-10-4\right)\)
\(=x^4-5x^2+9x-14\)