\(P\left(x\right)=x^3+4x^3+3x-6x-4-x^2\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2022

a)

P(x) = x3 + 4x3 +3x - 6x - 4 - x2

P(x) = 5x3 -x2 -3x-4

Hệ số cao nhất là: 5

Hẹ số tự do là: -4

Q(x)= -x3 -x3 + 3x+8

Q(x) = -2x2 + 3x+8

6 tháng 5 2022

\(P\left(x\right)=x^3+4x^3+3x-6x-4-x^2\)

\(P\left(x\right)=\left(x^3+4x^3\right)-x^2+\left(3x-6x\right)-4\)

\(P\left(x\right)=5x^3-x^3-3x-4\)

\(\text{Hệ số cao nhất:5}\)

\(\text{Hệ số tự do:-4}\)

\(Q\left(x\right)=-x^3-x^3+3x+8\)

\(Q\left(x\right)=\left(-x^3-x^3\right)+3x+8\)

\(Q\left(x\right)=-2x^3+3x+8\)

 

31 tháng 1 2018

\(P\left(x\right)=2+5x^2-3x^3+4x^2-2x-x^3+6x^5\)

\(P\left(x\right)=6x^5-3x^3-x^3+5x^2+4x^2-2x+2\)

\(P\left(x\right)=6x^5-4x^3+9x^2-2x+2\)

b) Hệ số lũy thừa khác 0 bậc 0 của đa thức P(x) là 2

Hệ số lũy thừa khác 0 bậc 1 của đa thức P(x) là -2

Hệ số lũy thừa khác 0 bậc 2 của đa thức P(x) là 9

Hệ số lũy thừa khác 0 bậc 3 của đa thức P(x) là -4

Hệ số lũy thừa khác 0 bậc 5 của đa thức P(x) là 6

19 tháng 4 2017

Ta có P(x) = 2 + 5x2 – 3x3 + 4x2 – 2x – x3 + 6x5.

a) Thu gọn P(x) = 2 + 9x2 – 4x3 - 2x + 6x5

Sắp xếp theo thứ tự giảm của biến:

P(x) = 6x5 – 4x3 + 9x2 – 2x + 2

b) Hệ số lũy thừa bậc 5 là 6

Hệ số lũy thừa bậc 3 là -4

Hệ số lũy thừa bậc 2 là 9

Hệ số lũy thừa bậc 1 là -2

Hệ số lũy thừa bậc 0 là 2.



4 tháng 4 2017

a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)

  \(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)

b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)

    g(x)=A(x)-B(x) =  \(-x^4+8x^3+4x^2+6x\)\(-10\)

c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)

         = -10

   g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)

         =\(-54\)

18 tháng 12 2017

f(x)=x5+3x2−5x3−x7+x3+2x2+x5−4x2−x7⇒f(x)=2x5−4x3+x2

Đa thức có bậc là 5

g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2g(x)=x4+4x3−5x8−x7+x3+x2−2x7+x4−4x2−x8⇒g(x)=−6x8−3x7+2x4+5x3−3x2

Đa thức có bậc là 8.

Thu gọn và sắp xếp các đa thức f (x) và g (x) theo lũy thừa giảm của biến rồi tìm bậc của đa thức đó.



13 tháng 5 2017

a) x7-x4+2x3-3x4-x2+x7-x+5-x3

= 5-x-x2+(2x3-x3)-(x4+3x4)+(x7+x7)

= 5-x-x2+x3-4x4+2x7

Hệ số cao nhất là 2. Hệ số tự do là 5

b) 2x2-3x4-3x2-4x5-\(\dfrac{1}{2}\)x-x2+1

= 1-\(\dfrac{1}{2}\)x+(2x2-3x2-x2)-3x4-4x5

= 1-\(\dfrac{1}{2}\)x-2x2-3x4-4x5

Hệ số cao nhất là -4. Hệ số tự do là 1

5 tháng 4 2018

1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)

\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)

\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

2)       \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

      +

          \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)

                \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

-

                \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)

4 tháng 5 2019

a) A(x) = \(x^2-5x^3+3x+\)\(2x^3\)\(x^2+\left(-5x^3+2x^3\right)+3x\)=\(x^2-3x^3+3x\)

=\(-3x^3+x^2+3x\)

B(x)= \(-x^2+7+3x^3-x-5\)\(-x^2+2+3x^3-x\)

=\(3x^3-x^2-x+2\)

b) A(x) - B(x) = \(-3x^3+x^2+3x\)\(3x^3+x^2+x-2\)

=\(\left(-3x^3-3x^3\right)+\left(x^2+x^2\right)+\left(3x+x\right)-2\)\(-6x^3+2x^2+4x-2\)

vậy A(x) - B(x) =\(-6x^3+2x^2+4x-2\)

c) C(x) = A(x) + B(x) =\(-3x^3+x^2+3x\)\(3x^3-x^2-x+2\)= 2x+2

ta có: C(x) = 0 <=> 2x+2=0

      => 2x=-2

=> x=-1

vậy x=-1 là nghiệm của đa thức C(x)

4 tháng 5 2019

a) A(x)= -3x^3 + x^2 + 3x

B(x)= 3x^3 - x^2 - x +2

b) A(x) - B(x) = - 3x^3 + x^2 + 3x - (3x^3 - x^2 - x + 2)

= -3x^3 + x^2 + 3x - 3x^3 + x^2 + x - 2

= -6x^3 + 2x^2 + 4x -2 

c) C(x) = A(x) + B(x) = - 3x^3 + x^2 + 3x + 3x^3 - x^2 - x +2= 2x + 2

C(x) có nghiệm => C(x)=0 => 2x + 2 = 0 => 2x=-2 => x=-1

Vậy x=-1 là nghiệm của C(x)

3 tháng 4 2022

a) \(P\left(x\right)=2+5x^2-3x^2+4x^2-2x-x^3+6x^5\)

\(P=6x^5-x^3+\left(5x^2-3x^2+4x^2\right)-2x+2\)

\(P=6x^5-x^2+6x^2-2x+2\)

b) Hệ số khác 0 của đa thức P(x): 6; -1; 6; -2; 2