Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)
\(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)
b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)
g(x)=A(x)-B(x) = \(-x^4+8x^3+4x^2+6x\)\(-10\)
c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)
= -10
g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)
=\(-54\)
![](https://rs.olm.vn/images/avt/0.png?1311)
BT1: 20152014 có tận cùng là 5
20142015=2014.(20142)1007=2014.40561961007=2014.(...6) => Có tận cùng là ...4
=> 20152014-20142015 có tận cùng là ...5-...4=...1
BT2: f(1)=a.1+b=1 (1)
f(2)=a.2+b=4 (2)
Trừ (2) cho (1) => a=3
Thay a=3 vào (1) => b=-2
ĐS: a=3; b=-2
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 4:
Ta có: \(B=\frac{x^2+y^2+7}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\)
Vì \(x^2+y^2+2>0\) nên để \(\frac{5}{x^2+y^2+2}\) lớn nhất thì \(x^2+y^2+2\) nhỏ nhất.
Lại có:
\(\left\{\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\Rightarrow x^2+y^2\ge0\Rightarrow x^2+y^2+2\ge2\)
\(\Rightarrow\frac{5}{x^2+y^2+2}\le\frac{5}{2}\)
\(\Rightarrow1+\frac{5}{x^2+y^2+2}\le1+2,5\)
\(\Rightarrow B=\frac{x^2+y^2+7}{x^2+y^2+2}\le3,5\)
Vậy \(MAX_B=3,5\) khi \(x=y=0\)
5)Ta có 26y chẵn, 2000 chẵn \(\Rightarrow51x\)chẵn \(\Rightarrow x⋮2\)
Mà x nguyên tố \(\Rightarrow x=2\)
Thay x=2 vào ta có
51.2+26y=2000
\(\Rightarrow102+26y=2000\)
\(\Rightarrow26y=1898\)
\(\Rightarrow y=73\)
Vậy \(x=2,y=73\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) A(x)= \(-2x^4+x^2-x-7-2\)
B(x)=\(2x^4+6x^3-2x^3-x^2-8x-5\)
b) Thay số:A(x)
\(1^2-1-2-2\cdot1^4+7=3\)
B(x)
\(6\cdot2^3+2\cdot2^4-8\cdot2-5-2\cdot2^3-2^2=39\)
c)\(6x^3-2x^3-7x-12-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
chia đa thức => phần dư=0
<=>A(x)=(x^2-3x+4).x^2-4(x^2-3x+4)+(a-3...
phân dư là (a-3).x+b+16=>a=3, b=-16
a: A(4)=2014
A(-4)=64+2014=2078
B(-4)=4x8-4=28
B(4)=-4
b: \(f\left(x\right)=A\left(x\right)+B\left(x\right)-10\)
\(=\left(x-4\right)^2+2014+4\left|x-4\right|-4-10\)
\(=\left(x-4\right)^2+4\left|x-4\right|+2000\ge2000\)
Dấu '=' xảy ra khi x=4